論文の概要: Gaussian process model kernels for noisy optimization in variational quantum algorithms
- arxiv url: http://arxiv.org/abs/2412.13271v1
- Date: Tue, 17 Dec 2024 19:05:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 13:24:10.229432
- Title: Gaussian process model kernels for noisy optimization in variational quantum algorithms
- Title(参考訳): 変分量子アルゴリズムにおけるノイズ最適化のためのガウス過程モデルカーネル
- Authors: Luca Arceci, Viacheslav Kuzmin, Rick Van Bijnen,
- Abstract要約: 変分量子アルゴリズム(VQA)は、ノイズのある射影測定の結果に基づいて、量子デバイス上でのパラメトリック化試行状態を最適化することにより、古典的または量子最適化の問題を解決することを目的としている。
我々は、典型的なVQAコスト関数が周波数の少ない振動挙動を示すという観察から着想を得た三角カーネルを紹介した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Variational Quantum Algorithms (VQAs) aim at solving classical or quantum optimization problems by optimizing parametrized trial states on a quantum device, based on the outcomes of noisy projective measurements. The associated optimization process benefits from an accurate modeling of the cost function landscape using Gaussian Process Models (GPMs), whose performance is critically affected by the choice of their kernel. Here we introduce trigonometric kernels, inspired by the observation that typical VQA cost functions display oscillatory behaviour with only few frequencies. Appropriate scores to benchmark the reliability of a GPM are defined, and a systematic comparison between different kernels is carried out on prototypical problems from quantum chemistry and combinatorial optimization. We further introduce RotoGP, a sequential line-search optimizer equipped with a GPM, and test how different kernels can help mitigate noise and improve optimization convergence. Overall, we observe that the trigonometric kernels show the best performance in most of the cases under study.
- Abstract(参考訳): 変分量子アルゴリズム(VQA)は、ノイズのある射影測定の結果に基づいて、量子デバイス上でのパラメトリック化試行状態を最適化することにより、古典的または量子最適化の問題を解決することを目的としている。
関連する最適化プロセスは、Gaussian Process Models (GPM) を用いてコスト関数のランドスケープの正確なモデリングから恩恵を受ける。
ここでは、典型的なVQAコスト関数がわずかな周波数しか持たない振動挙動を示すという観察から着想を得た三角カーネルを紹介する。
GPMの信頼性を評価するための適切なスコアが定義され、量子化学と組合せ最適化の原始的な問題に対して異なるカーネル間の体系的な比較が行われる。
さらに、GPMを備えたシーケンシャルライン探索オプティマイザであるRotoGPを導入し、異なるカーネルがノイズを緩和し、最適化収束を改善する方法について検証する。
全体として、三角カーネルは、研究中のほとんどのケースで最高の性能を示す。
関連論文リスト
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - Optimizing Unitary Coupled Cluster Wave Functions on Quantum Hardware: Error Bound and Resource-Efficient Optimizer [0.0]
本稿では、量子ハードウェア上でのユニタリ結合クラスタ波関数の最適化のための射影量子固有解法(PQE)アプローチについて検討する。
このアルゴリズムはシュル・オーディンガー方程式の射影を用いて、試行状態をハミルトニアンの固有状態に効率的に近づける。
我々は,BFGS法を用いて最適化されたarXiv:2102.00345とVQEの両方で導入された最適化よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-19T15:03:59Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
古典学のパフォーマンスを、半ランダム化された一連のタスクで比較する。
量子システムにおける一般に好適な性能とクエリ効率のため、局所ゼロ階数に着目する。
論文 参考訳(メタデータ) (2023-10-14T02:13:26Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
本稿では,雑音量子プロセッサ上での小型から中規模の変分アルゴリズムを提案する。
提案手法は,計算負荷をこれらのハイブリッドアルゴリズムの古典的成分にシフトさせ,量子プロセッサへのクエリ数を劇的に削減する。
論文 参考訳(メタデータ) (2022-11-02T14:11:25Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
雑音は量子回路のバイアスによる目的関数の評価を行う。
我々は、欠落した保証を導き、収束率が影響を受けないことを見出す。
論文 参考訳(メタデータ) (2022-09-21T19:18:41Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
変分量子アルゴリズム(VQA)は、学術・工業研究への応用に短期的な量子ハードウェアを使用するための有望な道を提供する。
SLSQP, COBYLA, CMA-ES, SPSAの4つの最適化手法の性能について検討した。
論文 参考訳(メタデータ) (2021-11-26T12:13:20Z) - A Comparison of Various Classical Optimizers for a Variational Quantum
Linear Solver [0.0]
変分型ハイブリッド量子古典アルゴリズム(VHQCAs)は、ノイズの多い量子デバイス上で動作することを目的とした量子アルゴリズムのクラスである。
これらのアルゴリズムは、パラメータ化量子回路(アンサッツ)と量子古典フィードバックループを用いる。
古典的なデバイスは、量子デバイス上ではるかに効率的に計算できるコスト関数を最小限に抑えるためにパラメータを最適化するために使用される。
論文 参考訳(メタデータ) (2021-06-16T10:40:00Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。