論文の概要: Statistical Modeling of Univariate Multimodal Data
- arxiv url: http://arxiv.org/abs/2412.15894v1
- Date: Fri, 20 Dec 2024 13:49:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:59.324291
- Title: Statistical Modeling of Univariate Multimodal Data
- Title(参考訳): 単変量マルチモーダルデータの統計的モデリング
- Authors: Paraskevi Chasani, Aristidis Likas,
- Abstract要約: そこで本研究では,一助データを一助部分集合に分割する手法を提案する。
谷点検出には, 経験的累積密度関数の凸船体上の臨界点の特性を導入する。
次に、得られた各ユニモーダル部分集合に対する統計モデルを提供するユニモーダルデータモデリング手法を適用する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Unimodality constitutes a key property indicating grouping behavior of the data around a single mode of its density. We propose a method that partitions univariate data into unimodal subsets through recursive splitting around valley points of the data density. For valley point detection, we introduce properties of critical points on the convex hull of the empirical cumulative density function (ecdf) plot that provide indications on the existence of density valleys. Next, we apply a unimodal data modeling approach that provides a statistical model for each obtained unimodal subset in the form of a Uniform Mixture Model (UMM). Consequently, a hierarchical statistical model of the initial dataset is obtained in the form of a mixture of UMMs, named as the Unimodal Mixture Model (UDMM). The proposed method is non-parametric, hyperparameter-free, automatically estimates the number of unimodal subsets and provides accurate statistical models as indicated by experimental results on clustering and density estimation tasks.
- Abstract(参考訳): 一様性は、その密度の1つのモードの周りのデータのグループ化挙動を示す重要な特性を構成する。
本研究では,データ密度の谷点周辺を再帰的に分割することで,一変量データを一様部分集合に分割する手法を提案する。
谷点検出には,密度谷の存在を示す経験的累積密度関数(ecdf)プロットの凸殻上の臨界点の特性を導入する。
次に、Uniform Mixture Model (UMM) の形式で得られた各ユニモーダルサブセットの統計モデルを提供する、ユニモーダルデータモデリング手法を適用する。
その結果、初期データセットの階層的統計モデルは、UDMM(Unimodal Mixture Model)と呼ばれるUMMの混合形式によって得られる。
提案手法は,非パラメトリック・ハイパーパラメータフリーで,非モード部分集合の数を自動で推定し,クラスタリングおよび密度推定タスクの実験結果によって示される正確な統計モデルを提供する。
関連論文リスト
- Unified Convergence Analysis for Score-Based Diffusion Models with Deterministic Samplers [49.1574468325115]
決定論的サンプリングのための統合収束分析フレームワークを提案する。
我々のフレームワークは$tilde O(d2/epsilon)$の反復複雑性を実現する。
また,Denoising Implicit Diffusion Models (DDIM) タイプのサンプルについて詳細な分析を行った。
論文 参考訳(メタデータ) (2024-10-18T07:37:36Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Empirical Density Estimation based on Spline Quasi-Interpolation with
applications to Copulas clustering modeling [0.0]
密度推定は、様々な分野において、基礎となるデータの分布をモデル化し理解するための基礎的な手法である。
本稿では,擬似補間による密度の単変量近似を提案する。
提案アルゴリズムは人工データセットと実データセットで検証される。
論文 参考訳(メタデータ) (2024-02-18T11:49:38Z) - PQMass: Probabilistic Assessment of the Quality of Generative Models
using Probability Mass Estimation [8.527898482146103]
生成モデルの品質を評価するための包括的サンプルベース手法を提案する。
提案手法により,同じ分布から2組のサンプルが引き出される確率を推定できる。
論文 参考訳(メタデータ) (2024-02-06T19:39:26Z) - A Multivariate Unimodality Test Harnessing the Dip Statistic of Mahalanobis Distances Over Random Projections [0.18416014644193066]
線形ランダムプロジェクションとポイント・ツー・ポイント・ディスタンシングにより、一次元の一様性原理を多次元空間に拡張する。
我々の手法は$alpha$-unimodalityの仮定に根ざし、泥ッドと呼ばれる新しい一様性試験を提示する。
理論的および実証的研究は,多次元データセットの一様性評価における本手法の有効性を確認した。
論文 参考訳(メタデータ) (2023-11-28T09:11:02Z) - Anomaly Detection with Variance Stabilized Density Estimation [49.46356430493534]
本稿では, 観測試料の確率を最大化するための分散安定化密度推定問題を提案する。
信頼性の高い異常検知器を得るために,分散安定化分布を学習するための自己回帰モデルのスペクトルアンサンブルを導入する。
我々は52のデータセットで広範なベンチマークを行い、我々の手法が最先端の結果につながることを示した。
論文 参考訳(メタデータ) (2023-06-01T11:52:58Z) - LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection [0.0]
この方法は、データの低次元表現を学習するためのオートエンコーダと密度推定モデルを組み合わせる。
本手法は, 推定密度に基づいて, 新しい試料の正規度を推定する。
実験結果から,本手法が他の最先端手法と同等あるいは同等に動作することを示す。
論文 参考訳(メタデータ) (2022-11-15T21:51:42Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Entropy Minimizing Matrix Factorization [102.26446204624885]
NMF(Nonnegative Matrix Factorization)は、広く使用されているデータ分析技術であり、多くの実際のタスクで印象的な結果をもたらしました。
本研究では,上述の問題に対処するために,EMMF (Entropy Minimizing Matrix Factorization framework) を開発した。
通常、外れ値が通常のサンプルよりもはるかに小さいことを考えると、行列分解のために新しいエントロピー損失関数が確立される。
論文 参考訳(メタデータ) (2021-03-24T21:08:43Z) - The UU-test for Statistical Modeling of Unimodal Data [0.20305676256390928]
一次元データセットの一様性を決定するUUテスト(Unimodal Uniform test)手法を提案する。
このアプローチのユニークな特徴は、一様性の場合、一様混合モデルという形でデータの統計モデルも提供することである。
論文 参考訳(メタデータ) (2020-08-28T08:34:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。