論文の概要: HPCNeuroNet: A Neuromorphic Approach Merging SNN Temporal Dynamics with Transformer Attention for FPGA-based Particle Physics
- arxiv url: http://arxiv.org/abs/2412.17571v1
- Date: Mon, 23 Dec 2024 13:44:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:55:31.077983
- Title: HPCNeuroNet: A Neuromorphic Approach Merging SNN Temporal Dynamics with Transformer Attention for FPGA-based Particle Physics
- Title(参考訳): HPCNeuroNet:FPGA系粒子物理学におけるSNN時間ダイナミクスと変圧器注意を組み合わせたニューロモルフィックアプローチ
- Authors: Murat Isik, Hiruna Vishwamith, Jonathan Naoukin, I. Can Dikmen,
- Abstract要約: HPCNeuroNetは粒子物理学に適したスパイキングニューラルネットワーク(SNN)、トランスフォーマー、高性能コンピューティングの先駆的な融合である。
HPCNeuroNetの中心には、SNNに固有のシーケンシャルダイナミズムと、Transformerのコンテキスト対応アテンション機能の統合がある。
素粒子物理学におけるSNN, Transformer, FPGAベースの高性能コンピューティングの組み合わせは, 重要な前進を示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents the innovative HPCNeuroNet model, a pioneering fusion of Spiking Neural Networks (SNNs), Transformers, and high-performance computing tailored for particle physics, particularly in particle identification from detector responses. Our approach leverages SNNs' intrinsic temporal dynamics and Transformers' robust attention mechanisms to enhance performance when discerning intricate particle interactions. At the heart of HPCNeuroNet lies the integration of the sequential dynamism inherent in SNNs with the context-aware attention capabilities of Transformers, enabling the model to precisely decode and interpret complex detector data. HPCNeuroNet is realized through the HLS4ML framework and optimized for deployment in FPGA environments. The model accuracy and scalability are also enhanced by this architectural choice. Benchmarked against machine learning models, HPCNeuroNet showcases better performance metrics, underlining its transformative potential in high-energy physics. We demonstrate that the combination of SNNs, Transformers, and FPGA-based high-performance computing in particle physics signifies a significant step forward and provides a strong foundation for future research.
- Abstract(参考訳): 本稿では,粒子物理,特に検出器応答からの粒子識別に適した,スパイキングニューラルネットワーク(SNN),トランスフォーマー,高性能コンピューティングの先駆的融合である,革新的なHPCNeuroNetモデルを提案する。
提案手法は,SNNの固有時間力学とトランスフォーマーの頑健な注意機構を利用して,複雑な粒子相互作用を識別する際の性能を向上させる。
HPCNeuroNetの中心には、SNNに固有のシーケンシャルなダイナミズムと、トランスフォーマーのコンテキスト認識型アテンション機能の統合があり、モデルが複雑な検出器データを正確に復号し解釈することができる。
HPCNeuroNetは、HLS4MLフレームワークを通じて実現され、FPGA環境へのデプロイに最適化されている。
このアーキテクチャの選択によって、モデルの精度とスケーラビリティも向上します。
機械学習モデルに対してベンチマークされたHPCNeuroNetは、高性能なパフォーマンス指標を示し、高エネルギー物理学におけるその変革の可能性を強調している。
粒子物理学におけるSNN, Transformer, FPGAベースの高性能コンピューティングの組み合わせは, 今後の研究の強力な基盤となることを実証する。
関連論文リスト
- Combining Aggregated Attention and Transformer Architecture for Accurate and Efficient Performance of Spiking Neural Networks [44.145870290310356]
近年、スパイキングニューラルネットワークは、その特徴的な低消費電力特性のために、大きな注目を集めている。
トランスフォーマーモデルは、強力な自己アテンション機構と並列処理能力で知られており、様々な領域で例外的な性能を示している。
SNNとTransformersの双方の大きな利点にもかかわらず、SNNの低消費電力の利点とTransformersの性能を直接組み合わせることは困難である。
論文 参考訳(メタデータ) (2024-12-18T07:07:38Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - FL-QDSNNs: Federated Learning with Quantum Dynamic Spiking Neural Networks [4.635820333232683]
本稿では,FL-QDSNN(Federated Learning-Quantum Dynamic Spiking Neural Networks)フレームワークを紹介する。
私たちのフレームワークの中心は、量子スパイキングニューラルネットワーク(QSNN)における量子ゲートを活性化するための新しい動的しきい値機構である。
我々のFL-QDSNNsフレームワークは、Irisデータセットで94%の精度を示し、既存のQuantum Federated Learning(QFL)アプローチを著しく上回っている。
論文 参考訳(メタデータ) (2024-12-03T09:08:33Z) - Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources [12.723995633698514]
再生可能エネルギーの統合と電気化のためのインバータベースの資源(IBR)は、電力系統の動的解析に大きく挑戦する。
同期ジェネレータ(SG)とIRBの両方を考慮するため、この研究は個々の動的コンポーネントのモデルを学ぶためのアプローチを示す。
論文 参考訳(メタデータ) (2024-09-22T14:07:10Z) - Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification [10.069224006497162]
量子・スパイキングニューラルネットワーク(PPF-QSNN)の並列比例融合(Parallel Proportional Fusion of Quantum and Spiking Neural Networks)と呼ばれる新しいアーキテクチャを導入する。
提案したPPF-QSNNは、既存のスパイクニューラルネットワークと、精度、損失、ロバストネスといったメトリクスにわたるシリアル量子ニューラルネットワークの両方より優れている。
本研究は、人工知能計算における量子優位性の発展と応用の基盤となるものである。
論文 参考訳(メタデータ) (2024-04-01T10:35:35Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - Astrocyte-Integrated Dynamic Function Exchange in Spiking Neural
Networks [0.0]
本稿では,スパイキングニューラルネットワーク(SNN)の堅牢性と計算効率を向上させるための革新的な手法を提案する。
提案手法はヒト脳に広く分布するグリア細胞であるアストロサイトをSNNに統合し、アストロサイトを増強したネットワークを形成する。
特に、アストロサイトを拡張したSNNは、ほぼゼロのレイテンシと理論上無限のスループットを示し、計算効率が極めて高いことを示唆している。
論文 参考訳(メタデータ) (2023-09-15T08:02:29Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
我々は、共設計ニューラルネットワーク(NN)のトレーニングと実装のためのエンドツーエンドワークフローを開発する。
これにより、ハードウェアにおける効率的なNN実装が、非専門家に、単一のオープンソースワークフローでアクセスできるようになる。
大型ハドロン衝突型加速器(LHC)の40MHz衝突速度で動作しなければならないトリガー決定を含む粒子物理学アプリケーションにおけるワークフローを実演する。
シミュレーションLHC陽子-陽子衝突における高速粒子ジェット用混合精度NNを実装した。
論文 参考訳(メタデータ) (2023-04-13T18:00:01Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。