論文の概要: Variational Bayesian Inference for Tensor Robust Principal Component Analysis
- arxiv url: http://arxiv.org/abs/2412.18717v1
- Date: Wed, 25 Dec 2024 00:29:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:24:27.742496
- Title: Variational Bayesian Inference for Tensor Robust Principal Component Analysis
- Title(参考訳): テンソルロバスト主成分分析のための変分ベイズ推定法
- Authors: Chao Wang, Huiwen Zheng, Raymond Chan, Youwen Wen,
- Abstract要約: 現在のアプローチはテンソルの低ランク特性を正確に捉えるのにしばしば困難に遭遇する。
我々は、低ランクテンソル核ノルムと一般化された空間誘導前とを統合したTRPCAのためのベイズ的フレームワークを紹介する。
この方法は、重み付きテンソル核ノルムモデルに効率的に拡張することができる。
- 参考スコア(独自算出の注目度): 2.6623354466198412
- License:
- Abstract: Tensor Robust Principal Component Analysis (TRPCA) holds a crucial position in machine learning and computer vision. It aims to recover underlying low-rank structures and characterizing the sparse structures of noise. Current approaches often encounter difficulties in accurately capturing the low-rank properties of tensors and balancing the trade-off between low-rank and sparse components, especially in a mixed-noise scenario. To address these challenges, we introduce a Bayesian framework for TRPCA, which integrates a low-rank tensor nuclear norm prior and a generalized sparsity-inducing prior. By embedding the proposed priors within the Bayesian framework, our method can automatically determine the optimal tensor nuclear norm and achieve a balance between the nuclear norm and sparse components. Furthermore, our method can be efficiently extended to the weighted tensor nuclear norm model. Experiments conducted on synthetic and real-world datasets demonstrate the effectiveness and superiority of our method compared to state-of-the-art approaches.
- Abstract(参考訳): Tensor Robust principal Component Analysis (TRPCA)は、機械学習とコンピュータビジョンにおいて重要な位置を占めている。
基礎となる低ランク構造を復元し、ノイズのスパース構造を特徴付けることを目的としている。
現在のアプローチでは、テンソルの低ランク特性を正確に把握し、特に混合ノイズシナリオにおいて、低ランク成分とスパース成分のトレードオフのバランスをとるのが困難であることが多い。
これらの課題に対処するために、我々は低ランクテンソル核ノルムと一般化された空間誘導前とを統合したTRPCAのベイズ的フレームワークを導入する。
提案手法をベイズフレームワークに組み込むことで, 最適テンソル核ノルムを自動決定し, 核ノルムとスパース成分のバランスをとることができる。
さらに,本手法を重み付きテンソル核ノルムモデルに効率的に拡張することができる。
合成および実世界のデータセットを用いて行った実験は、最先端の手法と比較して、本手法の有効性と優位性を示した。
関連論文リスト
- Learnable Scaled Gradient Descent for Guaranteed Robust Tensor PCA [39.084456109467204]
本稿では, t-SVD フレームワーク内での効率的なスケールド勾配降下(SGD)手法を提案する。
RTPCA-SGD は条件数に依存しない定数速度で真の低ランクテンソルへの線形収束を実現する。
論文 参考訳(メタデータ) (2025-01-08T15:25:19Z) - Tight Stability, Convergence, and Robustness Bounds for Predictive Coding Networks [60.3634789164648]
予測符号化(PC)のようなエネルギーベースの学習アルゴリズムは、機械学習コミュニティにおいて大きな注目を集めている。
動的システム理論のレンズを用いて,PCの安定性,堅牢性,収束性を厳密に解析する。
論文 参考訳(メタデータ) (2024-10-07T02:57:26Z) - Low-Multi-Rank High-Order Bayesian Robust Tensor Factorization [7.538654977500241]
本稿では,ベイジアンフレームワーク内の低階高階ロバスト因子分解(LMH-BRTF)と呼ばれる新しい高階TRPCA法を提案する。
具体的には、観測された劣化テンソルを、低ランク成分、スパース成分、ノイズ成分の3つの部分に分解する。
注文$d$ t-SVDに基づいて低ランクコンポーネントの低ランクモデルを構築することで、LMH-BRTFはテンソルのマルチランクを自動的に決定できる。
論文 参考訳(メタデータ) (2023-11-10T06:15:38Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - Deep Unfolded Tensor Robust PCA with Self-supervised Learning [21.710932587432396]
深部展開を用いたテンソルRPCAの高速かつ簡易な自己教師モデルについて述べる。
我々のモデルは、競争力やパフォーマンスを保ちながら、根拠となる真理ラベルの必要性を排除します。
我々はこれらの主張を、合成データと実世界のタスクの混合上で実証する。
論文 参考訳(メタデータ) (2022-12-21T20:34:42Z) - Global Weighted Tensor Nuclear Norm for Tensor Robust Principal
Component Analysis [25.848106663205865]
本稿では,新しいグローバル重み付きTRPCA法(GWTRPCA)を提案する。
これはフーリエ領域における前頭間スライスと前頭間スライス特異値の重要性を同時に考慮した最初のアプローチである。
このグローバルな情報をエクスプロイトすることで、GWTRPCAはより大きな特異値のペナルティを減らし、より小さな重みを割り当てる。
論文 参考訳(メタデータ) (2022-09-28T13:27:10Z) - Implicit Full Waveform Inversion with Deep Neural Representation [91.3755431537592]
連続的かつ暗黙的に定義されたディープニューラル表現を用いた暗黙完全波形逆変換(IFWI)アルゴリズムを提案する。
理論的および実験的解析は、ランダムな初期モデルが与えられた場合、IFWIが大域的な最小値に収束できることを示している。
IFWIは、様々な2次元地質モデルの実験で実証される、ある程度の堅牢性と強い一般化能力を持っている。
論文 参考訳(メタデータ) (2022-09-08T01:54:50Z) - Defensive Tensorization [113.96183766922393]
本稿では,ネットワークの遅延高次分解を利用した対角防御手法であるテンソル防御手法を提案する。
我々は,標準画像分類ベンチマークにおけるアプローチの有効性を実証的に実証した。
我々は,音声タスクとバイナリネットワークを考慮し,ドメイン間のアプローチと低精度アーキテクチャの汎用性を検証した。
論文 参考訳(メタデータ) (2021-10-26T17:00:16Z) - Robust Tensor Principal Component Analysis: Exact Recovery via
Deterministic Model [5.414544833902815]
本稿では,ロバストテンソル主成分分析法(RTPCA)を提案する。
これは最近開発されたテンソルテンソル積とテンソル特異値分解(t-SVD)に基づいている。
論文 参考訳(メタデータ) (2020-08-05T16:26:10Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
本稿では,テンソル低ランクモデルに基づくマルチビュースペクトルクラスタリング(MVSC)の問題について検討する。
MVSCに適合する新しい構造テンソル低ランクノルムを設計する。
提案手法は最先端の手法よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T11:52:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。