論文の概要: Comparative Performance Analysis of Quantum Machine Learning Architectures for Credit Card Fraud Detection
- arxiv url: http://arxiv.org/abs/2412.19441v2
- Date: Fri, 03 Jan 2025 03:36:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:10:08.554095
- Title: Comparative Performance Analysis of Quantum Machine Learning Architectures for Credit Card Fraud Detection
- Title(参考訳): クレジットカード不正検出のための量子機械学習アーキテクチャの比較解析
- Authors: Mansour El Alami, Nouhaila Innan, Muhammad Shafique, Mohamed Bennai,
- Abstract要約: 本研究では3つのQML分類器の性能に異なる量子特徴写像とアンザッツ構成がどう影響するかを検討する。
VQCは引き続き強力な分類結果を示し、F1スコアは0.88であり、SQNNも有望な結果をもたらす。
対照的に、EQNNは、非標準化されたデータによってもたらされる課題を強調しながら、堅牢な結果を生み出すのに苦労している。
- 参考スコア(独自算出の注目度): 3.5418331252013897
- License:
- Abstract: As financial fraud becomes increasingly complex, effective detection methods are essential. Quantum Machine Learning (QML) introduces certain capabilities that may enhance both accuracy and efficiency in this area. This study examines how different quantum feature map and ansatz configurations affect the performance of three QML-based classifiers-the Variational Quantum Classifier (VQC), the Sampler Quantum Neural Network (SQNN), and the Estimator Quantum Neural Network (EQNN)-when applied to two non-standardized financial fraud datasets. Different quantum feature map and ansatz configurations are evaluated, revealing distinct performance patterns. The VQC consistently demonstrates strong classification results, achieving an F1 score of 0.88, while the SQNN also delivers promising outcomes. In contrast, the EQNN struggles to produce robust results, emphasizing the challenges presented by non-standardized data. These findings highlight the importance of careful model configuration in QML-based financial fraud detection. By showing how specific feature maps and ansatz choices influence predictive success, this work guides researchers and practitioners in refining QML approaches for complex financial applications.
- Abstract(参考訳): 金融詐欺がますます複雑化するにつれ、効果的な検出方法が不可欠である。
量子機械学習(Quantum Machine Learning, QML)は、この領域の正確性と効率性の両方を高める能力を導入している。
本研究では,QMLに基づく3つの分類器(変分量子分類器(VQC),SQNN,Estimator Quantum Neural Network(EQNN))の性能に与える影響について検討した。
異なる量子特徴マップとアンザッツ構成が評価され、異なるパフォーマンスパターンが明らかにされる。
VQCは引き続き強力な分類結果を示し、F1スコアは0.88であり、SQNNも有望な結果をもたらす。
対照的に、EQNNは、非標準化されたデータによってもたらされる課題を強調しながら、堅牢な結果を生み出すのに苦労している。
これらの結果は,QMLに基づく金融詐欺検出において,注意深いモデル構成の重要性を浮き彫りにした。
この研究は、特定の特徴マップとアンザッツの選択が予測的成功にどのように影響するかを示すことで、複雑な金融アプリケーションに対するQMLアプローチの洗練を研究者や実践者がガイドする。
関連論文リスト
- Modeling Quantum Machine Learning for Genomic Data Analysis [12.248184406275405]
量子機械学習(QML)は進化を続け、多様なアプリケーションに新たな機会を開放している。
ゲノム配列データのバイナリ分類におけるQMLモデルの適用性について,様々な特徴マッピング手法を用いて検討・評価する。
ベンチマークゲノミクスデータセット上で実験を行うために,オープンソースで独立したQiskitベースの実装を提案する。
論文 参考訳(メタデータ) (2025-01-14T15:14:26Z) - LEP-QNN: Loan Eligibility Prediction Using Quantum Neural Networks [4.2435928520499635]
我々は、量子ニューラルネットワーク(LEP-QNN)を用いたローン適性予測に量子機械学習(QML)を用いる新しいアプローチを提案する。
私たちの革新的なアプローチは、単一の包括的なデータセットからローンの適格性を98%の精度で予測します。
本研究は、金融予測におけるQMLの可能性を示し、QML技術の進歩のための基礎的なガイドを確立する。
論文 参考訳(メタデータ) (2024-12-04T09:35:03Z) - A Coverage-Guided Testing Framework for Quantum Neural Networks [1.7101498519540597]
量子ニューラルネットワーク(QNN)は、量子コンピューティングとニューラルネットワークを組み合わせて機械学習モデルを改善する。
本稿では,QNNの状態探索を体系的に評価するために,QNNを対象としたテストカバレッジ基準のセットであるQCovを提案する。
論文 参考訳(メタデータ) (2024-11-03T08:07:27Z) - A Post-Training Approach for Mitigating Overfitting in Quantum
Convolutional Neural Networks [0.24578723416255752]
量子畳み込みニューラルネットワーク(QCNN)におけるオーバーフィッティング軽減のためのポストトレーニング手法の検討
古典的なポストトレーニング手法であるニューロトン・ドロップアウトの量子設定への直接的な適応は、QCNNの成功確率を著しく低下させる。
我々は、この効果がQCNNにおける絡み合いの重要な役割と、QCNNの絡み合い損失に対する脆弱性を明らかにすることを論じる。
論文 参考訳(メタデータ) (2023-09-04T21:46:24Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Financial Fraud Detection: A Comparative Study of Quantum Machine
Learning Models [0.0]
量子サポートベクトルモデルは、詐欺と非詐欺のクラスでF1スコアが0.98 0.98と最高性能を達成した。
この記事では、現在の制限を克服するソリューションを提供し、不正検出における量子機械学習の分野に新たな洞察を提供する。
論文 参考訳(メタデータ) (2023-08-09T21:47:50Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
変分量子アルゴリズム(VQA)は、ファイナンス、機械学習、化学といった様々な分野において、証明可能な計算上の優位性を得るための強力な証拠を示している。
しかし、現代のVQAで利用されるアンザッツは、表現性と訓練性の間のトレードオフのバランスをとることができない。
8量子ビット超伝導量子プロセッサ上でVQAを強化するために,効率的な自動アンサッツ設計技術を適用した最初の実証実験を実証する。
論文 参考訳(メタデータ) (2022-01-04T01:53:42Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。