Magnetic Field Data Calibration with Transformer Model Using Physical Constraints: A Scalable Method for Satellite Missions, Illustrated by Tianwen-1
- URL: http://arxiv.org/abs/2501.00020v3
- Date: Wed, 12 Mar 2025 13:15:56 GMT
- Title: Magnetic Field Data Calibration with Transformer Model Using Physical Constraints: A Scalable Method for Satellite Missions, Illustrated by Tianwen-1
- Authors: Beibei Li, Yutian Chi, Yuming Wang,
- Abstract summary: This study introduces a novel approach that integrates the magnetic field data correction from the Tianwen-1 Mars mission with a neural network architecture constrained by Maxwell's equation equations.<n>By employing a Transformer based model, the method corrects measurement anomalies caused by satellite dynamics, instrument interference, and environmental noise.
- Score: 3.4775479922416292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a novel approach that integrates the magnetic field data correction from the Tianwen-1 Mars mission with a neural network architecture constrained by physical principles derived from Maxwell's equation equations. By employing a Transformer based model capable of efficiently handling sequential data, the method corrects measurement anomalies caused by satellite dynamics, instrument interference, and environmental noise. As a result, it significantly improves both the accuracy and the physical consistency of the calibrated data. Compared to traditional methods that require long data segments and manual intervention often taking weeks or even months to complete this new approach can finish calibration in just minutes to hours, and predictions are made within seconds. This innovation not only accelerates the process of space weather modeling and planetary magnetospheric studies but also provides a robust framework for future planetary exploration and solar wind interaction research.
Related papers
- The geomagnetic storm and Kp prediction using Wasserstein transformer [1.1272369832509876]
We present a novel framework for predicting the 3 days and 5 days planetary Kp index by integrating heterogeneous data sources.
A key innovation is the incorporation of the Wasserstein distance into the transformer and the loss function to align the probability distributions across modalities.
arXiv Detail & Related papers (2025-03-29T14:39:42Z) - Implicit Neural Surface Deformation with Explicit Velocity Fields [47.610773635281085]
We introduce the first unsupervised method that simultaneously predicts time-varying neural implicit surfaces and deformations between pairs of point clouds.
Our method is able to handle both rigid and non-rigid deformations without any intermediate shape supervision.
arXiv Detail & Related papers (2025-01-23T19:11:53Z) - Data-driven Probabilistic Trajectory Learning with High Temporal Resolution in Terminal Airspace [9.688760969026305]
We propose a data-driven learning framework, that leverages the predictive and feature extraction capabilities of the mixture models and seq2seq-based neural networks.
After training with this framework, the learned model can improve long-step prediction accuracy significantly.
The accuracy and effectiveness of the approach are evaluated by comparing the predicted trajectories with the ground truth.
arXiv Detail & Related papers (2024-09-25T21:08:25Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Global-local Fourier Neural Operator for Accelerating Coronal Magnetic Field Model [17.256941005824576]
We propose a global-local Fourier Neural Operator (GL-FNO) that contains two branches of FNO.
The performance of the GLFNO is compared with state-of-the-art deep learning methods, including FNO, U-NO, U-FNO, Vision Transformer, CNN-RNN, and CNN-LSTM.
The results demonstrate that GL-FNO not only accelerates the MHD simulation (a few seconds for prediction, more than times 20,000 speed up) but also provides reliable prediction capabilities, thus greatly contributing to the understanding of space weather dynamics.
arXiv Detail & Related papers (2024-05-21T13:04:53Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Physics-Enhanced TinyML for Real-Time Detection of Ground Magnetic
Anomalies [0.0]
Space weather phenomena like geomagnetic disturbances (GMDs) pose significant risks to critical technological infrastructure.
This paper develops a physics-guided TinyML framework to address the above challenges.
It integrates physics-based regularization at the stages of model training and compression, thereby augmenting the reliability of predictions.
arXiv Detail & Related papers (2023-11-19T23:20:16Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - Physics-driven machine learning for the prediction of coronal mass
ejections' travel times [46.58747894238344]
Coronal Mass Ejections (CMEs) correspond to dramatic expulsions of plasma and magnetic field from the solar corona into the heliosphere.
CMEs are correlated to geomagnetic storms and may induce the generation of Solar Energetic Particles streams.
The present paper introduces a physics-driven artificial intelligence approach to the prediction of CMEs travel time.
arXiv Detail & Related papers (2023-05-17T08:53:29Z) - DiffTraj: Generating GPS Trajectory with Diffusion Probabilistic Model [44.490978394267195]
We propose a spatial-temporal probabilistic model for trajectory generation (DiffTraj)
The core idea is to reconstruct and synthesize geographic trajectories from white noise through a reverse trajectory denoising process.
Experiments on two real-world datasets show that DiffTraj can be intuitively applied to generate high-fidelity trajectories.
arXiv Detail & Related papers (2023-04-23T08:42:45Z) - A machine learning and feature engineering approach for the prediction
of the uncontrolled re-entry of space objects [1.0205541448656992]
We present the development of a deep learning model for the re-entry prediction of uncontrolled objects in Low Earth Orbit (LEO)
The model is based on a modified version of the Sequence-to-Sequence architecture and is trained on the average altitude profile as derived from a set of Two-Line Element (TLE) data of over 400 bodies.
The novelty of the work consists in introducing in the deep learning model, alongside the average altitude, three new input features: a drag-like coefficient (B*), the average solar index, and the area-to-mass ratio of the object.
arXiv Detail & Related papers (2023-03-17T13:53:59Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Physics-Consistent Data-driven Waveform Inversion with Adaptive Data
Augmentation [12.564534712461331]
We develop a new hybrid computational approach to solve full-waveform inversion (FWI)
We develop a data augmentation strategy that can improve the representativity of the training set.
We apply our method to synthetic elastic seismic waveform data generated from a subsurface geologic model built on a carbon sequestration site at Kimberlina, California.
arXiv Detail & Related papers (2020-09-03T17:12:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.