論文の概要: SG-Splatting: Accelerating 3D Gaussian Splatting with Spherical Gaussians
- arxiv url: http://arxiv.org/abs/2501.00342v1
- Date: Tue, 31 Dec 2024 08:31:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:14:32.206425
- Title: SG-Splatting: Accelerating 3D Gaussian Splatting with Spherical Gaussians
- Title(参考訳): SG-Splatting:球状ガウスによる3次元ガウス散乱の高速化
- Authors: Yiwen Wang, Siyuan Chen, Ran Yi,
- Abstract要約: 3Dガウススプラッティングは、新しい視点合成における最先端技術として登場しつつある。
しかし、色表現のための3次球面高調波への依存は、大きなストレージ要求と計算オーバーヘッドをもたらす。
SG-Splatting with Spherical Gaussian based color representation, a novel approach to enhance rendering speed and quality。
- 参考スコア(独自算出の注目度): 21.00454010373162
- License:
- Abstract: 3D Gaussian Splatting is emerging as a state-of-the-art technique in novel view synthesis, recognized for its impressive balance between visual quality, speed, and rendering efficiency. However, reliance on third-degree spherical harmonics for color representation introduces significant storage demands and computational overhead, resulting in a large memory footprint and slower rendering speed. We introduce SG-Splatting with Spherical Gaussians based color representation, a novel approach to enhance rendering speed and quality in novel view synthesis. Our method first represents view-dependent color using Spherical Gaussians, instead of three degree spherical harmonics, which largely reduces the number of parameters used for color representation, and significantly accelerates the rendering process. We then develop an efficient strategy for organizing multiple Spherical Gaussians, optimizing their arrangement to achieve a balanced and accurate scene representation. To further improve rendering quality, we propose a mixed representation that combines Spherical Gaussians with low-degree spherical harmonics, capturing both high- and low-frequency color information effectively. SG-Splatting also has plug-and-play capability, allowing it to be easily integrated into existing systems. This approach improves computational efficiency and overall visual fidelity, making it a practical solution for real-time applications.
- Abstract(参考訳): 3D Gaussian Splattingは、視覚的品質、スピード、レンダリング効率の顕著なバランスで認識されている、新しいビュー合成における最先端技術として登場している。
しかし、色表現のための3次球面高調波への依存は、大きなストレージ要求と計算オーバーヘッドをもたらし、メモリフットプリントが大きくなり、レンダリング速度が遅くなる。
SG-Splatting with Spherical Gaussian based color representation, a novel approach to enhance rendering speed and quality in novel view synthesis。
提案手法は,3次球面高調波の代わりに球面ガウス色を用いて視色に依存した色を表現し,色表現に使用するパラメータの数を大幅に削減し,描画過程を大幅に高速化する。
次に,複数の球面ガウスを整理し,その配置を最適化し,バランスよく正確なシーン表現を実現するための効率的な戦略を開発する。
レンダリング品質をさらに向上するために,球面ガウスと低次球面高調波を組み合わせた混合表現を提案し,高周波数と低周波数の両方の色情報を効果的に取得する。
SG-Splattingにはプラグイン・アンド・プレイ機能もあり、既存のシステムと簡単に統合できる。
このアプローチは計算効率と全体的な視覚的忠実度を改善し、リアルタイムアプリケーションのための実用的なソリューションとなる。
関連論文リスト
- Deformable Beta Splatting [4.855751031707892]
3D Gaussian Splatting (3DGS) はリアルタイムレンダリングにより高度な放射場再構成を行う。
変形可能ベータスプレイティング(DBS)は,形状と色表現を両立させる,変形可能かつコンパクトなアプローチである。
論文 参考訳(メタデータ) (2025-01-27T18:58:43Z) - SpecGaussian with Latent Features: A High-quality Modeling of the View-dependent Appearance for 3D Gaussian Splatting [11.978842116007563]
Lantent-SpecGSは、各3Dガウス内の普遍的な潜在神経記述子を利用するアプローチである。
2つの並列CNNは、分割された特徴マップを拡散色と特異色に分離してデコーダとして設計されている。
視点に依存するマスクが学習され、これらの2色をマージし、最終的なレンダリング画像が生成される。
論文 参考訳(メタデータ) (2024-08-23T15:25:08Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
ハイパフォーマンスを維持しつつガウスの数を著しく削減する学習可能なマスク戦略を提案する。
さらに、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2024-08-07T14:56:34Z) - Splatfacto-W: A Nerfstudio Implementation of Gaussian Splatting for Unconstrained Photo Collections [25.154665328053333]
Splatfacto-Wは、ガウスごとのニューラルカラー特徴と画像ごとの外観をレンダリングプロセスに組み込む、自明なアプローチである。
提案手法は,3DGSに比べて平均5.3dBのPak Signal-to-Noise Ratio(PSNR)を向上し,NeRF法に比べて150倍のトレーニング速度を向上し,3DGSと同様のレンダリング速度を実現する。
論文 参考訳(メタデータ) (2024-07-17T04:02:54Z) - MVSGaussian: Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo [54.00987996368157]
MVSGaussianは、Multi-View Stereo(MVS)から導かれる新しい一般化可能な3次元ガウス表現手法である。
MVSGaussianは、シーンごとにより良い合成品質でリアルタイムレンダリングを実現する。
論文 参考訳(メタデータ) (2024-05-20T17:59:30Z) - RTG-SLAM: Real-time 3D Reconstruction at Scale using Gaussian Splatting [51.51310922527121]
ガウススプラッティングを用いた大規模環境のためのRGBDカメラを用いたリアルタイム3D再構成システムを提案する。
それぞれのガウス語は不透明かほぼ透明で、不透明なものは表面色と支配的な色に、透明なものは残留色に適合する。
様々な大きなシーンをリアルタイムに再現し、新しいビュー合成とカメラトラッキングの精度のリアリズムにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-30T16:54:59Z) - HO-Gaussian: Hybrid Optimization of 3D Gaussian Splatting for Urban Scenes [24.227745405760697]
本稿では,グリッドベースボリュームと3DGSパイプラインを組み合わせたHO-Gaussianというハイブリッド最適化手法を提案する。
広範に使用されている自律走行データセットの結果から,HO-Gaussianはマルチカメラ都市データセット上でリアルタイムに写真リアリスティックレンダリングを実現することが示された。
論文 参考訳(メタデータ) (2024-03-29T07:58:21Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM [111.83168930989503]
NICER-SLAMは、カメラポーズと階層的なニューラル暗黙マップ表現を同時に最適化するRGB SLAMシステムである。
近年のRGB-D SLAMシステムと競合する高密度マッピング,追跡,新しいビュー合成において,高い性能を示す。
論文 参考訳(メタデータ) (2023-02-07T17:06:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。