論文の概要: Evaluating Time Series Foundation Models on Noisy Periodic Time Series
- arxiv url: http://arxiv.org/abs/2501.00889v1
- Date: Wed, 01 Jan 2025 16:36:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:13:03.295046
- Title: Evaluating Time Series Foundation Models on Noisy Periodic Time Series
- Title(参考訳): ノイズ周期時系列に基づく時系列基礎モデルの評価
- Authors: Syamantak Datta Gupta,
- Abstract要約: 本稿では,雑音周期時系列を構成する2つのデータセットに対して,時系列基礎モデル(TSFM)の性能を評価する実験的検討を行った。
以上の結果から, TSFMは, 周期が制限された時系列に対して, より長い時間, 高い雑音レベル, サンプリング率, より複雑な時系列形状で予測能力が低下することが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: While recent advancements in foundation models have significantly impacted machine learning, rigorous tests on the performance of time series foundation models (TSFMs) remain largely underexplored. This paper presents an empirical study evaluating the zero-shot, long-horizon forecasting abilities of several leading TSFMs over two synthetic datasets constituting noisy periodic time series. We assess model efficacy across different noise levels, underlying frequencies, and sampling rates. As benchmarks for comparison, we choose two statistical techniques: a Fourier transform (FFT)-based approach and a linear autoregressive (AR) model. Our findings demonstrate that while for time series with bounded periods and higher sampling rates, TSFMs can match or outperform the statistical approaches, their forecasting abilities deteriorate with longer periods, higher noise levels, lower sampling rates and more complex shapes of the time series.
- Abstract(参考訳): 近年のファンデーションモデルの進歩は機械学習に大きな影響を与えているが、時系列ファンデーションモデル(TSFM)の性能に関する厳密な試験はほとんど未定である。
本稿では,雑音周期時系列を構成する2つの合成データセットに対して,複数の先行TSFMのゼロショット長水平予測能力を評価する実験的検討を行った。
異なる雑音レベル、基礎周波数、サンプリングレートのモデルの有効性を評価する。
比較のためのベンチマークとして、フーリエ変換(FFT)に基づくアプローチと線形自己回帰(AR)モデルという2つの統計手法を選択する。
本研究は, 時間境界とサンプリング率の高い時系列において, TSFMは, より長い時間, 高いノイズレベル, サンプリングレートの低下, より複雑な時系列形状で予測能力が低下することを示す。
関連論文リスト
- FM-TS: Flow Matching for Time Series Generation [71.31148785577085]
本稿では、時系列生成のための修正フローマッチングベースのフレームワークFM-TSを紹介する。
FM-TSは、トレーニングと推論の点でより効率的である。
我々は、太陽予測とMuJoCo計算タスクにおいて優れた性能を達成した。
論文 参考訳(メタデータ) (2024-11-12T03:03:23Z) - Retrieval-Augmented Diffusion Models for Time Series Forecasting [19.251274915003265]
検索時間拡張拡散モデル(RATD)を提案する。
RATDは埋め込みベースの検索プロセスと参照誘導拡散モデルという2つの部分から構成される。
当社のアプローチでは,データベース内の意味のあるサンプルを活用することで,サンプリングを支援し,データセットの利用を最大化することが可能です。
論文 参考訳(メタデータ) (2024-10-24T13:14:39Z) - FDF: Flexible Decoupled Framework for Time Series Forecasting with Conditional Denoising and Polynomial Modeling [5.770377200028654]
時系列予測は多くのWebアプリケーションにおいて不可欠であり、業界全体で重要な意思決定に影響を与える。
我々は拡散モデルが大きな欠点に悩まされていることを論じる。
予測性能を向上させるために,高品質な時系列表現を学習するフレキシブルデカップリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:20:43Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - Understanding Different Design Choices in Training Large Time Series Models [71.20102277299445]
不均一な時系列データに基づく大規模時系列モデル(LTSMs)のトレーニングには,ユニークな課題が伴う。
本稿では,時系列データに合わせた新しい統計プロンプトである,時系列プロンプトを提案する。
textttLTSM-bundleを導入します。
論文 参考訳(メタデータ) (2024-06-20T07:09:19Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - CLeaRForecast: Contrastive Learning of High-Purity Representations for
Time Series Forecasting [2.5816901096123863]
時系列予測(TSF)は現代社会において重要であり、多くの領域にまたがっている。
従来の表現学習に基づくTSFアルゴリズムは、典型的には、分離された傾向周期表現を特徴とする対照的な学習パラダイムを取り入れている。
CLeaRForecastは,高純度時系列表現をサンプル,特徴量,アーキテクチャ浄化手法を用いて学習するための,新しいコントラスト学習フレームワークである。
論文 参考訳(メタデータ) (2023-12-10T04:37:43Z) - Voice2Series: Reprogramming Acoustic Models for Time Series
Classification [65.94154001167608]
Voice2Seriesは、時系列分類のための音響モデルをプログラムする新しいエンドツーエンドアプローチである。
V2Sは20のタスクで性能が優れるか、最先端のメソッドと結びついているかを示し、平均精度を1.84%向上させる。
論文 参考訳(メタデータ) (2021-06-17T07:59:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。