論文の概要: Adaptive posterior distributions for uncertainty analysis of covariance matrices in Bayesian inversion problems for multioutput signals
- arxiv url: http://arxiv.org/abs/2501.01148v1
- Date: Thu, 02 Jan 2025 09:01:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:12:43.670145
- Title: Adaptive posterior distributions for uncertainty analysis of covariance matrices in Bayesian inversion problems for multioutput signals
- Title(参考訳): 多出力信号に対するベイズ逆問題における共分散行列の不確かさ解析のための適応的後部分布
- Authors: E. Curbelo, L. Martino, F. Llorente, D. Delgado-Gomez,
- Abstract要約: 非線形多出力モデルのパラメータに対してベイズ推定を行う際の問題に対処する。
興味のある変数は2つのブロックに分割され、推論は既知の解析最適化公式を利用する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper we address the problem of performing Bayesian inference for the parameters of a nonlinear multi-output model and the covariance matrix of the different output signals. We propose an adaptive importance sampling (AIS) scheme for multivariate Bayesian inversion problems, which is based in two main ideas: the variables of interest are split in two blocks and the inference takes advantage of known analytical optimization formulas. We estimate both the unknown parameters of the multivariate non-linear model and the covariance matrix of the noise. In the first part of the proposed inference scheme, a novel AIS technique called adaptive target adaptive importance sampling (ATAIS) is designed, which alternates iteratively between an IS technique over the parameters of the non-linear model and a frequentist approach for the covariance matrix of the noise. In the second part of the proposed inference scheme, a prior density over the covariance matrix is considered and the cloud of samples obtained by ATAIS are recycled and re-weighted to obtain a complete Bayesian study over the model parameters and covariance matrix. ATAIS is the main contribution of the work. Additionally, the inverted layered importance sampling (ILIS) is presented as a possible compelling algorithm (but based on a conceptually simpler idea). Different numerical examples show the benefits of the proposed approaches
- Abstract(参考訳): 本稿では,非線形多出力モデルと異なる出力信号の共分散行列のパラメータに対するベイズ推定を行う問題に対処する。
本稿では,多変量ベイズ逆問題に対する適応的重要度サンプリング(AIS)手法を提案する。
多変量非線形モデルの未知パラメータと雑音の共分散行列の両方を推定する。
提案手法の第一部では,適応目標適応重要度サンプリング(ATAIS)と呼ばれる新しいAIS手法を設計し,非線形モデルのパラメータに対してIS手法と雑音の共分散行列に対する頻繁なアプローチを反復的に交互に行う。
提案手法の第2部では, 共分散行列上の先行密度を考慮し, ATAISにより得られた試料の雲をリサイクルし, 再加重し, モデルパラメータと共分散行列に関するベイズ的完全な研究を得る。
ATAISが主な貢献である。
さらに、反転層重み付けサンプリング(ILIS)は、(概念上はより単純なアイデアに基づいて)説得力のあるアルゴリズムとして提示される。
異なる数値例は提案手法の利点を示している
関連論文リスト
- HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models [1.949927790632678]
本稿では,ブラウン運動文脈におけるコールホップ変換(Cole-Hopf transform)と呼ばれるログ変換に基づく。
本稿では,HJ-sampler という新しいアルゴリズムを開発し,与えられた終端観測による微分方程式の逆問題に対する推論を行う。
論文 参考訳(メタデータ) (2024-09-15T05:30:54Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
本稿では,アフィニティ行列からクラスタ情報を復元するための正規化プロジェクション行列近似フレームワークを提案する。
3つの異なるペナルティ関数について検討し, それぞれが有界, 正, スパースシナリオに対応するように調整した。
合成および実世界の両方のデータセットで行った数値実験により、我々の正規化射影行列近似アプローチはクラスタリング性能において最先端の手法を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-26T15:18:22Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
本稿では,Mixing Model Stiefel Adaptation (MSA)と呼ばれる時系列データに対する新しいドメイン適応手法を提案する。
我々は、ドメイン間の等価な信号分散とペアの対応を確立することにより、ターゲット領域における豊富なラベルのないデータを利用して効果的な予測を行う。
MSAは、Cam-CANデータセットのMEG信号を用いて、タスクの変動を伴う脳年齢回帰の最近の手法より優れている。
論文 参考訳(メタデータ) (2024-01-24T19:04:49Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Optimization of loading factor preventing target cancellation [11.193504036335503]
本稿では、干渉と雑音比(SINR)に対する経験的信号のサンプルに基づく負荷係数最適化のための反復アルゴリズムを提案する。
提案手法は, 構造的共分散行列と信号浸透モデルに関する仮定に依存しない。
論文 参考訳(メタデータ) (2020-10-09T14:04:48Z) - Bayesian learning of orthogonal embeddings for multi-fidelity Gaussian
Processes [3.564709604457361]
プロジェクション」マッピングは、事前未知と見なされる正則行列から成り、GPパラメータと共同で推論する必要がある。
提案するフレームワークをGPを用いたマルチ忠実度モデルに拡張し,複数の出力を同時にトレーニングするシナリオを含む。
提案手法の利点は, 産業用ガスタービン用最終段翼の3次元空力最適化に難渋するものである。
論文 参考訳(メタデータ) (2020-08-05T22:28:53Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。