論文の概要: Multi-view Bayesian optimisation in reduced dimension for engineering design
- arxiv url: http://arxiv.org/abs/2501.01552v1
- Date: Thu, 02 Jan 2025 22:03:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:11:21.338632
- Title: Multi-view Bayesian optimisation in reduced dimension for engineering design
- Title(参考訳): 工学設計のための縮小次元の多視点ベイズ最適化
- Authors: Thomas A. Archbold, Ieva Kazlauskaite, Fehmi Cirak,
- Abstract要約: 目的あるいは制約関数を表す入力設計変数と出力データの両方を考慮した多視点学習戦略を導入する。
確率的最小二乗(PPLS)を用いて,設計変数から潜伏変数への直交写像を学習する。
提案した確率論的最小二乗ベイズ最適化(PPLS-BO)戦略を,その決定論的手法,部分最小二乗ベイズ最適化(PLS-BO)および古典的ベイズ最適化と比較した。
- 参考スコア(独自算出の注目度): 0.9626666671366836
- License:
- Abstract: Bayesian optimisation is an adaptive sampling strategy for constructing a Gaussian process surrogate to emulate a black-box computational model with the aim of efficiently searching for the global minimum. However, Gaussian processes have limited applicability for engineering problems with many design variables. Their scalability can be significantly improved by identifying a low-dimensional vector of latent variables that serve as inputs to the Gaussian process. In this paper, we introduce a multi-view learning strategy that considers both the input design variables and output data representing the objective or constraint functions, to identify a low-dimensional space of latent variables. Adopting a fully probabilistic viewpoint, we use probabilistic partial least squares (PPLS) to learn an orthogonal mapping from the design variables to the latent variables using training data consisting of inputs and outputs of the black-box computational model. The latent variables and posterior probability densities of the probabilistic partial least squares and Gaussian process models are determined sequentially and iteratively, with retraining occurring at each adaptive sampling iteration. We compare the proposed probabilistic partial least squares Bayesian optimisation (PPLS-BO) strategy to its deterministic counterpart, partial least squares Bayesian optimisation (PLS-BO), and classical Bayesian optimisation, demonstrating significant improvements in convergence to the global minimum.
- Abstract(参考訳): ベイズ最適化 (Bayesian optimization) は、グローバル最小値の効率的な探索を目的としたブラックボックス計算モデルをエミュレートするために、ガウス過程を構成する適応サンプリング戦略である。
しかし、ガウス過程は多くの設計変数を持つ工学的問題に適用性に制限がある。
それらの拡張性は、ガウス過程の入力として機能する潜在変数の低次元ベクトルを同定することによって、著しく改善できる。
本稿では,入力設計変数と目的あるいは制約関数を表す出力データの両方を考慮した多視点学習戦略を導入し,潜在変数の低次元空間を同定する。
確率的最小二乗(PPLS)を用いて,ブラックボックス計算モデルの入力と出力からなる学習データを用いて,設計変数から潜在変数への直交写像を学習する。
確率的部分最小二乗およびガウス過程モデルの潜伏変数と後続確率密度を逐次かつ反復的に決定し、各適応的なサンプリング繰り返しで再学習を行う。
提案した確率的最小二乗ベイズ最適化(PPLS-BO)戦略を,その決定論的手法である部分最小二乗ベイズ最適化(PLS-BO)と古典的ベイズ最適化(PLS-BO)と比較し,世界最小への収束性を大幅に向上させた。
関連論文リスト
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
我々は,現代のディープラーニングにおいて広く普及している一般的なメタ学習問題に対処する。
これらの問題は、しばしばBi-Level Optimizations (BLO)として定式化される。
我々は,与えられたBLO問題を,内部損失関数が滑らかな分布となり,外損失が内部分布に対する期待損失となるようなii最適化に変換することにより,新たな視点を導入する。
論文 参考訳(メタデータ) (2024-10-14T12:10:06Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Simulation Based Bayesian Optimization [0.5524804393257919]
本稿では,獲得関数を最適化するための新しいアプローチとして,シミュレーションベースベイズ最適化(SBBO)を提案する。
GPは後続予測分布への解析的アクセスを提供するため、サロゲートモデルとして一般的に使用される。
本研究では,SBBOの有効性を種々の代理モデルを用いて実証的に実証する。
論文 参考訳(メタデータ) (2024-01-19T16:56:11Z) - Generative Models for Anomaly Detection and Design-Space Dimensionality
Reduction in Shape Optimization [0.0]
本研究は,グローバルアルゴリズムの効率向上と高品質な設計の促進を目的として,新たな形状最適化手法を提案する。
これは、幾何学的分散を最大化する新しい縮小部分空間を定義する元の設計変数の数を減らすことで達成される。
計算結果から,グローバル最適化アルゴリズムの収束性を改善するとともに,高品質な幾何学的特徴を持つ設計のみを生成する。
論文 参考訳(メタデータ) (2023-08-08T04:57:58Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification [0.0]
本稿では,二項制約を持つブラックボックス多目的最適化問題に対する適応最適化アルゴリズムを提案する。
本手法は確率的回帰モデルと分類モデルに基づいており,最適化目標のサロゲートとして機能する。
また,予想される超体積計算を高速化するために,新しい楕円形トランケーション法を提案する。
論文 参考訳(メタデータ) (2020-08-27T09:15:02Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。