論文の概要: PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models
- arxiv url: http://arxiv.org/abs/2501.03124v1
- Date: Mon, 06 Jan 2025 16:31:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:10:01.076008
- Title: PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models
- Title(参考訳): PRMBench: プロセスレベルリワードモデルのためのきめ細やかなベンチマーク
- Authors: Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, Yu Cheng,
- Abstract要約: PRMベンチ(PRM Bench)は, PRMの微細な誤差検出機能を評価するための, プロセスレベルのベンチマークである。
PRMBenchは、6,216の慎重に設計された問題と83,456のステップレベルラベルで構成され、複数の次元にわたるモデルを評価する。
- 参考スコア(独自算出の注目度): 28.74956741932006
- License:
- Abstract: Process-level Reward Models (PRMs) are crucial for complex reasoning and decision-making tasks, where each intermediate step plays an important role in the reasoning process. Since language models are prone to various types of errors during the reasoning process, PRMs are required to possess nuanced capabilities for detecting various implicit error types in real-world scenarios. However, current benchmarks primarily focus on step correctness, failing to evaluate PRMs' performance systematically. To address this gap, we introduce PRMBench, a process-level benchmark specifically designed to assess the fine-grained error detection capabilities of PRMs. PRMBench comprises 6,216 carefully designed problems and 83,456 step-level labels, evaluating models across multiple dimensions, including simplicity, soundness, and sensitivity. In our experiments on 15 models, spanning both open-source PRMs and closed-source large language models prompted as critic models, we uncover significant weaknesses in current PRMs. These findings underscore the challenges inherent in process-level evaluation and highlight key directions for future research. We hope PRMBench can be a robust bench for advancing research on PRM evaluation and development.
- Abstract(参考訳): プロセスレベル・リワード・モデル(PRM)は複雑な推論や意思決定に不可欠であり、各中間ステップが推論プロセスにおいて重要な役割を果たす。
言語モデルは推論過程において様々な種類のエラーを起こす傾向があるため、実世界のシナリオにおいて様々な暗黙のエラータイプを検出するためのニュアンス付き能力を持つ必要がある。
しかしながら、現在のベンチマークは主にステップの正しさに重点を置いており、PRMのパフォーマンスを体系的に評価することができなかった。
このギャップに対処するために, PRMBenchというプロセスレベルのベンチマークを導入し, PRMのきめ細かい誤差検出機能を評価する。
PRMBenchは、6,216の慎重に設計された問題と83,456のステップレベルのラベルで構成され、単純さ、音質、感度を含む複数の次元のモデルを評価する。
オープンソースのPRMと、批判モデルとして引き起こされたクローズドソースの大規模言語モデルの両方にまたがる15のモデルに関する実験では、現在のPRMの重大な弱点が明らかになった。
これらの知見はプロセスレベルの評価に固有の課題を明らかにし、今後の研究の鍵となる方向性を強調している。
PRMBenchは、PRMの評価・開発研究を進めるための堅牢なベンチになることを願っている。
関連論文リスト
- Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning [32.850036320802474]
本稿では,OOD問題に対処するための新しいフレームワークであるRetrieval-Augmented Process Reward Model(RetrievalPRM)を紹介する。
RetrievalPRMは2段階の検索強化機構を利用して、セマンティックに類似した質問やステップをウォームアップとして検索する。
我々の実験では、RetrievalPRMは複数の実世界のデータセットで既存のベースラインを上回ります。
論文 参考訳(メタデータ) (2025-02-20T08:40:09Z) - ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding [25.329712997545794]
ReARTeR(Retrieval-Augmented Reasoning)を提案する。
ReARTeRは、ポストトレーニングとテストタイムスケーリングを通じて、RAGシステムの推論能力を向上する。
マルチステップ推論ベンチマークの実験結果から,大幅な改善が示された。
論文 参考訳(メタデータ) (2025-01-14T05:56:26Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRM) は、推論プロセスにおける中間エラーを特定し、緩和することを目的としている。
我々は,モンテカルロ (MC) 推定とLarge Language Models (LLM) を効果的に統合するコンセンサスフィルタリング機構を開発した。
私たちは、既存のオープンソース代替品よりも優れた、最先端のPRMを新たにリリースしています。
論文 参考訳(メタデータ) (2025-01-13T13:10:16Z) - ProcessBench: Identifying Process Errors in Mathematical Reasoning [62.80402845414901]
本稿では,数学的推論における誤ったステップを識別する能力を測定するためのProcessBenchを紹介する。
ProcessBenchは3400のテストケースで構成され、主に競合とオリンピアードレベルの数学問題に焦点を当てている。
我々はProcessBenchについて、プロセス報酬モデル(PRM)と批判モデルという2種類のモデルを含む広範囲な評価を行う。
論文 参考訳(メタデータ) (2024-12-09T15:11:40Z) - Critical Tokens Matter: Token-Level Contrastive Estimation Enhances LLM's Reasoning Capability [53.51560766150442]
臨界トークンは推論軌道内の要素であり、誤った結果に大きな影響を及ぼす。
本稿では,これらのトークンをロールアウトサンプリングによって識別する新しいフレームワークを提案する。
クリティカルトークンの識別と置換がモデル精度を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-11-29T18:58:22Z) - Process Reward Model with Q-Value Rankings [18.907163177605607]
プロセス・リワード・モデリング(PRM)は複雑な推論と意思決定に不可欠である。
本稿では,マルコフ決定プロセスの文脈でPRMを再定義する新しいフレームワークであるProcess Q-value Model(PQM)を紹介する。
PQMは、新しい比較損失関数に基づいてQ値ランキングを最適化し、シーケンシャルな決定の中で複雑なダイナミクスをキャプチャするモデルの能力を向上する。
論文 参考訳(メタデータ) (2024-10-15T05:10:34Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。