Detecting Defective Wafers Via Modular Networks
- URL: http://arxiv.org/abs/2501.03368v1
- Date: Mon, 06 Jan 2025 20:11:37 GMT
- Title: Detecting Defective Wafers Via Modular Networks
- Authors: Yifeng Zhang, Bryan Baker, Shi Chen, Chao Zhang, Yu Huang, Qi Zhao, Sthitie Bom,
- Abstract summary: We propose a modular network (MN) trained using time series stage-wise datasets that embodies the structure of the manufacturing process.
It decomposes KQI prediction as a combination of stage modules to simulate compositional semiconductor manufacturing.
- Score: 24.679212395163688
- License:
- Abstract: The growing availability of sensors within semiconductor manufacturing processes makes it feasible to detect defective wafers with data-driven models. Without directly measuring the quality of semiconductor devices, they capture the modalities between diverse sensor readings and can be used to predict key quality indicators (KQI, \textit{e.g.}, roughness, resistance) to detect faulty products, significantly reducing the capital and human cost in maintaining physical metrology steps. Nevertheless, existing models pay little attention to the correlations among different processes for diverse wafer products and commonly struggle with generalizability issues. To enable generic fault detection, in this work, we propose a modular network (MN) trained using time series stage-wise datasets that embodies the structure of the manufacturing process. It decomposes KQI prediction as a combination of stage modules to simulate compositional semiconductor manufacturing, universally enhancing faulty wafer detection among different wafer types and manufacturing processes. Extensive experiments demonstrate the usefulness of our approach, and shed light on how the compositional design provides an interpretable interface for more practical applications.
Related papers
- Incomplete Multimodal Industrial Anomaly Detection via Cross-Modal Distillation [0.0]
multimodal industrial anomaly detection (IAD) based on 3D point clouds and RGB images remains a work in progress.
Existing quality control processes combine rapid in-line inspections, such as optical and infrared imaging with high-resolution but time-consuming near-line characterization techniques.
We propose CMDIAD, a Cross-Modal Distillation framework for IAD to demonstrate the feasibility of a Multi-modal Training, Few-modal Inference pipeline.
arXiv Detail & Related papers (2024-05-22T12:08:56Z) - An unsupervised approach towards promptable defect segmentation in laser-based additive manufacturing by Segment Anything [7.188573079798082]
We construct a framework for image segmentation using a state-of-the-art Vision Transformer (ViT) based Foundation model.
We obtain high accuracy without using any labeled data to guide the prompt tuning process.
We envision constructing a real-time anomaly detection pipeline that could revolutionize current laser additive manufacturing processes.
arXiv Detail & Related papers (2023-12-07T06:03:07Z) - Wafer Map Defect Patterns Semi-Supervised Classification Using Latent
Vector Representation [8.400553138721044]
The demand for defect detection during integrated circuit fabrication stages is becoming increasingly critical.
Traditional wafer map defect pattern detection methods involve manual inspection using electron microscopes.
We propose a model capable of automatically detecting defects as an alternative to manual operations.
arXiv Detail & Related papers (2023-10-06T08:23:36Z) - Soft Sensing Regression Model: from Sensor to Wafer Metrology
Forecasting [2.8992789044888436]
This work focuses on the task of soft sensing regression, which uses sensor data to predict impending inspection measurements.
We proposed an LSTM-based regressor and designed two loss functions for model training.
The experimental results demonstrated that the proposed model can achieve accurate and early prediction of various types of inspections in complicated manufacturing processes.
arXiv Detail & Related papers (2023-01-21T16:54:05Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - Visual-tactile sensing for Real-time liquid Volume Estimation in
Grasping [58.50342759993186]
We propose a visuo-tactile model for realtime estimation of the liquid inside a deformable container.
We fuse two sensory modalities, i.e., the raw visual inputs from the RGB camera and the tactile cues from our specific tactile sensor.
The robotic system is well controlled and adjusted based on the estimation model in real time.
arXiv Detail & Related papers (2022-02-23T13:38:31Z) - Machine Learning based Indicators to Enhance Process Monitoring by
Pattern Recognition [0.4893345190925177]
We propose a novel framework for machine learning based indicators combining pattern type and intensity.
In a case-study from semiconductor industry, our framework goes beyond conventional process control and achieves high quality experimental results.
arXiv Detail & Related papers (2021-03-24T10:13:20Z) - Unsupervised machine learning of topological phase transitions from
experimental data [52.77024349608834]
We apply unsupervised machine learning techniques to experimental data from ultracold atoms.
We obtain the topological phase diagram of the Haldane model in a completely unbiased fashion.
Our work provides a benchmark for unsupervised detection of new exotic phases in complex many-body systems.
arXiv Detail & Related papers (2021-01-14T16:38:21Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
This paper discloses a novel visual inspection system for liquid crystal display (LCD), which is currently a dominant type in the FPD industry.
System is based on two cornerstones: robust/high-performance defect recognition model and cognitive visual inspection service architecture.
arXiv Detail & Related papers (2021-01-11T08:14:35Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive-temporal quality framework for wireless access latency of connected vehicles.
LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure.
In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Varienational Autocoder (VAE)
arXiv Detail & Related papers (2020-03-16T03:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.