DeepVIVONet: Using deep neural operators to optimize sensor locations with application to vortex-induced vibrations
- URL: http://arxiv.org/abs/2501.04105v1
- Date: Tue, 07 Jan 2025 19:29:10 GMT
- Title: DeepVIVONet: Using deep neural operators to optimize sensor locations with application to vortex-induced vibrations
- Authors: Ruyin Wan, Ehsan Kharazmi, Michael S Triantafyllou, George Em Karniadakis,
- Abstract summary: DeepVIVONet is a new framework for optimal dynamic reconstruction and forecasting of vortex-induced vibrations (VIV) of a marine riser using field data.
We demonstrate effectiveness of DeepVIVONet in accurately reconstructing the motion of an off-shore marine riser by using sparse-temporal measurements.
- Score: 1.912429179274357
- License:
- Abstract: We introduce DeepVIVONet, a new framework for optimal dynamic reconstruction and forecasting of the vortex-induced vibrations (VIV) of a marine riser, using field data. We demonstrate the effectiveness of DeepVIVONet in accurately reconstructing the motion of an off--shore marine riser by using sparse spatio-temporal measurements. We also show the generalization of our model in extrapolating to other flow conditions via transfer learning, underscoring its potential to streamline operational efficiency and enhance predictive accuracy. The trained DeepVIVONet serves as a fast and accurate surrogate model for the marine riser, which we use in an outer--loop optimization algorithm to obtain the optimal locations for placing the sensors. Furthermore, we employ an existing sensor placement method based on proper orthogonal decomposition (POD) to compare with our data-driven approach. We find that that while POD offers a good approach for initial sensor placement, DeepVIVONet's adaptive capabilities yield more precise and cost-effective configurations.
Related papers
- Universal Online Temporal Calibration for Optimization-based Visual-Inertial Navigation Systems [13.416013522770905]
We propose a universal online temporal calibration strategy for optimization-based visual-inertial navigation systems.
We use the time offset td as a state parameter in the optimization residual model to align the IMU state to the corresponding image timestamp.
Our approach provides more accurate time offset estimation and faster convergence, particularly in the presence of noisy sensor data.
arXiv Detail & Related papers (2025-01-03T12:41:25Z) - MPVO: Motion-Prior based Visual Odometry for PointGoal Navigation [3.9974562667271507]
Visual odometry (VO) is essential for enabling accurate point-goal navigation of embodied agents in indoor environments.
Recent deep-learned VO methods show robust performance but suffer from sample inefficiency during training.
We propose a robust and sample-efficient VO pipeline based on motion priors available while an agent is navigating an environment.
arXiv Detail & Related papers (2024-11-07T15:36:49Z) - Understanding Optimization in Deep Learning with Central Flows [53.66160508990508]
We show that an RMS's implicit behavior can be explicitly captured by a "central flow:" a differential equation.
We show that these flows can empirically predict long-term optimization trajectories of generic neural networks.
arXiv Detail & Related papers (2024-10-31T17:58:13Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Outlier detection in maritime environments using AIS data and deep recurrent architectures [5.399126243770847]
We present a methodology based on deep recurrent models for maritime surveillance, over publicly available Automatic Identification System (AIS) data.
The setup employs a deep Recurrent Neural Network (RNN)-based model, for encoding and reconstructing the observed ships' motion patterns.
Our approach is based on a thresholding mechanism, over the calculated errors between observed and reconstructed motion patterns.
arXiv Detail & Related papers (2024-06-14T12:15:15Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - Globally Optimal Event-Based Divergence Estimation for Ventral Landing [55.29096494880328]
Event sensing is a major component in bio-inspired flight guidance and control systems.
We explore the usage of event cameras for predicting time-to-contact with the surface during ventral landing.
This is achieved by estimating divergence (inverse TTC), which is the rate of radial optic flow, from the event stream generated during landing.
Our core contributions are a novel contrast maximisation formulation for event-based divergence estimation, and a branch-and-bound algorithm to exactly maximise contrast and find the optimal divergence value.
arXiv Detail & Related papers (2022-09-27T06:00:52Z) - BeamsNet: A data-driven Approach Enhancing Doppler Velocity Log
Measurements for Autonomous Underwater Vehicle Navigation [12.572597882082054]
This paper proposes BeamsNet, an end-to-end deep learning framework to regress the estimated DVL velocity vector.
Our results show that the proposed approach achieved an improvement of more than 60% in estimating the DVL velocity vector.
arXiv Detail & Related papers (2022-06-27T19:38:38Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
We present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors.
We show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes.
arXiv Detail & Related papers (2021-09-02T17:54:31Z) - CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth [83.77839773394106]
We present a lightweight, tightly-coupled deep depth network and visual-inertial odometry system.
We provide the network with previously marginalized sparse features from VIO to increase the accuracy of initial depth prediction.
We show that it can run in real-time with single-thread execution while utilizing GPU acceleration only for the network and code Jacobian.
arXiv Detail & Related papers (2020-12-18T09:42:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.