論文の概要: Stable Derivative Free Gaussian Mixture Variational Inference for Bayesian Inverse Problems
- arxiv url: http://arxiv.org/abs/2501.04259v1
- Date: Wed, 08 Jan 2025 03:50:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:54:46.552427
- Title: Stable Derivative Free Gaussian Mixture Variational Inference for Bayesian Inverse Problems
- Title(参考訳): ベイズ逆問題に対する安定微分自由ガウス混合変分推定
- Authors: Baojun Che, Yifan Chen, Zhenghao Huan, Daniel Zhengyu Huang, Weijie Wang,
- Abstract要約: 主な課題は、フォワードモデルのコストがかかる評価、マルチモーダリティ、フォワードモデルの到達不能勾配である。
我々は,フィッシャー・ラオ自然勾配と特殊二次規則を組み合わせた変分推論フレームワークを開発し,ガウス混合変分族に対する微分自由更新を可能にする。
導関数自由ガウス混合変分推論 (DF-GMVI) と呼ばれるこの手法は共分散陽性とアフィン不変性を保証し、複素後続分布を近似するための安定かつ効率的なフレームワークを提供する。
- 参考スコア(独自算出の注目度): 4.842853252452336
- License:
- Abstract: This paper is concerned with the approximation of probability distributions known up to normalization constants, with a focus on Bayesian inference for large-scale inverse problems in scientific computing. In this context, key challenges include costly repeated evaluations of forward models, multimodality, and inaccessible gradients for the forward model. To address them, we develop a variational inference framework that combines Fisher-Rao natural gradient with specialized quadrature rules to enable derivative free updates of Gaussian mixture variational families. The resulting method, termed Derivative Free Gaussian Mixture Variational Inference (DF-GMVI), guarantees covariance positivity and affine invariance, offering a stable and efficient framework for approximating complex posterior distributions. The effectiveness of DF-GMVI is demonstrated through numerical experiments on challenging scenarios, including distributions with multiple modes, infinitely many modes, and curved modes in spaces with up to hundreds of dimensions. The method's practicality is further demonstrated in a large-scale application, where it successfully recovers the initial conditions of the Navier-Stokes equations from solution data at positive times.
- Abstract(参考訳): 本稿では,科学計算における大規模逆問題に対するベイズ推定に着目し,正規化定数で知られている確率分布の近似について考察する。
この文脈において重要な課題は、フォワードモデルのコストがかかる評価、マルチモーダリティ、フォワードモデルの到達不能勾配である。
そこで我々は,フィッシャー・ラオ自然勾配と特殊二次規則を組み合わせた変分推論フレームワークを開発し,ガウス混合変分族を微分自由更新可能にする。
導関数自由ガウス混合変分推論 (DF-GMVI) と呼ばれるこの手法は共分散陽性とアフィン不変性を保証し、複素後続分布を近似するための安定かつ効率的なフレームワークを提供する。
DF-GMVIの有効性は、複数のモードを持つ分布、無限に多くのモード、最大数百次元の空間における曲線モードを含む挑戦的なシナリオに関する数値実験を通じて実証される。
この手法の実用性はさらに大規模な応用で実証され、Navier-Stokes方程式の初期条件を正の時間で解データから回復することに成功した。
関連論文リスト
- Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations [7.439555720106548]
本稿では、カーネルハイパーパラメータを確率変数として扱い、結合微分方程式(SDE)を構築して、その後部分布と誘導点を学習する完全ベイズ的手法を提案する。
提案手法は,SDE法による結合変数による時間変化,包括的,現実的な後部近似を提供する。
我々の研究はベイズ的推論を推し進めるためのエキサイティングな研究の道を開き、継続的なガウス的プロセスのための強力なモデリングツールを提供する。
論文 参考訳(メタデータ) (2024-08-12T11:41:07Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
本稿では,拡散モデルを用いてベイズ推定を行う方法を示す。
本稿では,新しいノイズスケジュールを用いて,標準的なDBMトレーニングを通じてそのようなマップを学習する方法を示す。
その結果は、低次元の潜在空間上で一意に定義される非常に表現性の高い生成モデルのクラスである。
論文 参考訳(メタデータ) (2024-07-11T19:58:19Z) - Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows [10.153270126742369]
正規化定数を含む確率分布の効率的な近似サンプリングについて検討した。
具体的には,科学技術応用における大規模逆問題に対するベイズ推定における問題クラスに着目する。
論文 参考訳(メタデータ) (2024-06-25T04:07:22Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
フル共分散構造を持つ変分混合は、パラメータ数による変動パラメータによる二次的な成長に苦しむ。
本稿では,変分推論のウォームスタートに使用できる初期ガウスモデル近似を構築する方法を提案する。
論文 参考訳(メタデータ) (2023-07-12T19:30:04Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Variational Kalman Filtering with Hinf-Based Correction for Robust
Bayesian Learning in High Dimensions [2.294014185517203]
本稿では,頑健な変動目標とHinf-normに基づく補正を適用し,逐次変動推定フィルタ(VIF)の収束問題に対処する。
連続的な変分推論とHinfに基づく最適化ステップを利用する新しいVIF-Hinf再帰法を提案する。
論文 参考訳(メタデータ) (2022-04-27T17:38:13Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Stochastic Normalizing Flows [52.92110730286403]
微分方程式(SDE)を用いた最大推定と変分推論のための正規化フロー(VI)を導入する。
粗い経路の理論を用いて、基礎となるブラウン運動は潜在変数として扱われ、近似され、神経SDEの効率的な訓練を可能にする。
これらのSDEは、与えられたデータセットの基盤となる分布からサンプリングする効率的なチェーンを構築するために使用することができる。
論文 参考訳(メタデータ) (2020-02-21T20:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。