論文の概要: RieszBoost: Gradient Boosting for Riesz Regression
- arxiv url: http://arxiv.org/abs/2501.04871v1
- Date: Wed, 08 Jan 2025 23:04:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:59:59.721486
- Title: RieszBoost: Gradient Boosting for Riesz Regression
- Title(参考訳): RieszBoost: Riesz回帰のためのグラディエントブースティング
- Authors: Kaitlyn J. Lee, Alejandro Schuler,
- Abstract要約: 本稿では,Riesz表現子を直接推定するために,その明示的な解析形式を必要とせず,新たな勾配向上アルゴリズムを提案する。
提案アルゴリズムは,様々な関数を対象とした間接推定手法と同等以上の性能を示す。
- 参考スコア(独自算出の注目度): 49.737777802061984
- License:
- Abstract: Answering causal questions often involves estimating linear functionals of conditional expectations, such as the average treatment effect or the effect of a longitudinal modified treatment policy. By the Riesz representation theorem, these functionals can be expressed as the expected product of the conditional expectation of the outcome and the Riesz representer, a key component in doubly robust estimation methods. Traditionally, the Riesz representer is estimated indirectly by deriving its explicit analytical form, estimating its components, and substituting these estimates into the known form (e.g., the inverse propensity score). However, deriving or estimating the analytical form can be challenging, and substitution methods are often sensitive to practical positivity violations, leading to higher variance and wider confidence intervals. In this paper, we propose a novel gradient boosting algorithm to directly estimate the Riesz representer without requiring its explicit analytical form. This method is particularly suited for tabular data, offering a flexible, nonparametric, and computationally efficient alternative to existing methods for Riesz regression. Through simulation studies, we demonstrate that our algorithm performs on par with or better than indirect estimation techniques across a range of functionals, providing a user-friendly and robust solution for estimating causal quantities.
- Abstract(参考訳): 因果的疑問に答えるには、平均的治療効果や縦方向修正治療ポリシーの効果など、条件付き期待の線形関数を推定することが多い。
リースの表現定理(英語版)により、これらの函数は結果の条件付き期待値の期待積として表され、リースの表現器(英語版)(Riesz representationer)は二重ロバストな推定法の主要な要素である。
伝統的に、リースの表現子は、その明示的な解析形式を導出し、その成分を推定し、これらの推定を既知の形式に置換することによって間接的に推定される(例えば、逆の確率スコア)。
しかし、分析形態の導出や推定は困難であり、置換法はしばしば実用的肯定的違反に敏感であり、より高い分散とより広い信頼区間をもたらす。
本稿では,Riesz表現子を直接推定するために,その明示的な解析形式を必要とせず,新たな勾配向上アルゴリズムを提案する。
この方法は特に表形式のデータに適しており、既存のリース回帰法に代わる柔軟で非パラメトリックで計算効率の良い代替手段を提供する。
シミュレーション研究を通じて,本アルゴリズムは様々な機能にわたって間接推定手法と同等以上の性能を示し,因果量の推定にユーザフレンドリで堅牢な解を提供する。
関連論文リスト
- Nonparametric estimation of Hawkes processes with RKHSs [1.775610745277615]
本稿では、再生カーネル空間(RKHS)に相互作用関数が存在すると仮定した非線形ホークス過程の非パラメトリック推定について述べる。
神経科学の応用によって動機づけられたこのモデルは、エキサイティングな効果と阻害的な効果を表現するために、複雑な相互作用機能を実現する。
本手法は, 関連する非パラメトリック推定手法よりも優れた性能を示し, 神経応用に適していることが示唆された。
論文 参考訳(メタデータ) (2024-11-01T14:26:50Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
時間差差(TD)学習は、おそらく政策評価に最も広く使用されるものであり、この目的の自然な枠組みとして機能する。
本稿では,Polyak-Ruppert平均化と線形関数近似によるTD学習の整合性について検討し,既存の結果よりも3つの重要な改善点を得た。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation [2.1756081703276]
Fr'echet回帰は、非ユークリッド応答変数を含む回帰分析のための有望なアプローチとして登場した。
提案手法は,大域的Fr'echet回帰と主成分回帰の概念を組み合わせて,回帰推定器の効率と精度を向上させることを目的とする。
論文 参考訳(メタデータ) (2023-05-16T08:37:54Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - Off-Policy Evaluation with Policy-Dependent Optimization Response [90.28758112893054]
我々は,テキスト政治に依存した線形最適化応答を用いた非政治評価のための新しいフレームワークを開発した。
摂動法による政策依存推定のための非バイアス推定器を構築する。
因果介入を最適化するための一般的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-02-25T20:25:37Z) - Support estimation in high-dimensional heteroscedastic mean regression [2.28438857884398]
ランダムな設計と、潜在的にヘテロセダスティックで重み付きエラーを伴う線形平均回帰モデルを考える。
我々は,問題のパラメータに依存するチューニングパラメータを備えた,厳密な凸・滑らかなHuber損失関数の変種を用いる。
得られた推定器に対して、$ell_infty$ノルムにおける符号一貫性と最適収束率を示す。
論文 参考訳(メタデータ) (2020-11-03T09:46:31Z) - On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression
Estimators [4.392844455327199]
非パラメトリック回帰における単純なプラグインカーネルリッジ回帰(KRR)推定器を提案する。
我々は,提案した推定器の挙動を統一的に研究するために,非漸近解析を行う。
提案した推定器は、導関数の任意の順序に対するチューニングパラメータを同じ選択で最適収束率を達成する。
論文 参考訳(メタデータ) (2020-06-02T02:32:39Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z) - Robust Boosting for Regression Problems [0.0]
基底学習者の線形結合による回帰予測アルゴリズムの構築
このロバストなブースティングアルゴリズムは、2段階のアプローチに基づいており、ロバストな線形回帰のためにブースティングが行なわれているのと同様である。
非定型的な観測が存在しない場合、頑健な昇降法は正方形損失を伴う標準勾配昇降法と同様に機能する。
論文 参考訳(メタデータ) (2020-02-06T01:12:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。