論文の概要: Non-asymptotic analysis of the performance of the penalized least trimmed squares in sparse models
- arxiv url: http://arxiv.org/abs/2501.04946v1
- Date: Thu, 09 Jan 2025 03:36:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 14:00:33.280722
- Title: Non-asymptotic analysis of the performance of the penalized least trimmed squares in sparse models
- Title(参考訳): スパースモデルにおけるペナル化最小トリミング正方形の性能の非漸近解析
- Authors: Yijun Zuo,
- Abstract要約: 最小三重二乗推定器(LTS)は古典的最小二乗推定器の代用として名高い。
本稿は、LTSを高い確率で推定し予測するための有限標本(漸近的でない)誤差境界を確立する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The least trimmed squares (LTS) estimator is a renowned robust alternative to the classic least squares estimator and is popular in location, regression, machine learning, and AI literature. Many studies exist on LTS, including its robustness, computation algorithms, extension to non-linear cases, asymptotics, etc. The LTS has been applied in the penalized regression in a high-dimensional real-data sparse-model setting where dimension $p$ (in thousands) is much larger than sample size $n$ (in tens, or hundreds). In such a practical setting, the sample size $n$ often is the count of sub-population that has a special attribute (e.g. the count of patients of Alzheimer's, Parkinson's, Leukemia, or ALS, etc.) among a population with a finite fixed size N. Asymptotic analysis assuming that $n$ tends to infinity is not practically convincing and legitimate in such a scenario. A non-asymptotic or finite sample analysis will be more desirable and feasible. This article establishes some finite sample (non-asymptotic) error bounds for estimating and predicting based on LTS with high probability for the first time.
- Abstract(参考訳): 最小トリミング平方(LTS)推定器は、古典的な最小二乗推定器の代わりとして名高い堅牢な代替品であり、位置、回帰、機械学習、AI文学で人気がある。
LTSには、堅牢性、計算アルゴリズム、非線形ケースの拡張、漸近性など、多くの研究がある。
LTS は高次元の実データスパースモデルにおけるペナル化回帰において適用され、次元$p$ (数千) はサンプルサイズ$n$ (数十、数百) よりもはるかに大きい。
そのような実践的な環境では、サンプルサイズ$n$はしばしば、有限サイズの集団の中で特別な属性(例えば、アルツハイマー病、パーキンソン病、白血病、ALS等の患者数など)を持つサブ人口のカウントである。
非漸近的または有限的なサンプル分析はより望ましいものであり、実現可能である。
本稿では,LTSに基づく推定と予測のための有限標本(漸近的でない)誤差境界を初めて高い確率で確立する。
関連論文リスト
- On Computationally Efficient Learning of Exponential Family
Distributions [33.229944519289795]
我々は、サポートと自然なパラメータが適切にバウンドされている設定に焦点を当てる。
本手法は,ノードワイズ・スパースランダムフィールドに適した場合,$O(sf log(k)/alpha2)$のオーダー最適サンプル複雑性を実現する。
論文 参考訳(メタデータ) (2023-09-12T17:25:32Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - On High dimensional Poisson models with measurement error: hypothesis
testing for nonlinear nonconvex optimization [13.369004892264146]
我々は高次元の回帰モデルの推定と検証を行い、データ解析に広く応用する。
ペナル化された一貫性を最小化することで回帰パラメータを推定する。
提案手法はアルツハイマー病イニシアチブに適用される。
論文 参考訳(メタデータ) (2022-12-31T06:58:42Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
実用データセットに対する予測の偏見を回避し、頻繁な不確実性を推定する改善された手法を開発している。
私たちの主な貢献は、推定と推論の計算時間をマグニチュードの順序で短縮する収束保証付き信号強度の推定器SLOEです。
論文 参考訳(メタデータ) (2021-03-23T17:48:56Z) - Sparse network asymptotics for logistic regression [0.0]
ロジスティック回帰の漸近正規性は三角配列に対する Martingale Central limit theorem (CLT) を用いて示される。
スパースネットワークは、サンプリング変動のさらなる源を含むばらつきを示唆し、(ii) はダイアディック依存の度合いで有効であるので、より良い推論をもたらす可能性がある。
論文 参考訳(メタデータ) (2020-10-09T17:46:29Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
本稿では、生成モデル(シミュレータ)へのアクセスを想定して、強化学習のサンプル効率について検討する。
最初に$gamma$-discounted infinite-horizon Markov decision process (MDPs) with state space $mathcalS$ and action space $mathcalA$を考える。
対象の精度を考慮すれば,モデルに基づく計画アルゴリズムが最小限のサンプルの複雑さを実現するのに十分であることを示す。
論文 参考訳(メタデータ) (2020-05-26T17:53:18Z) - Computationally efficient sparse clustering [67.95910835079825]
我々はPCAに基づく新しいクラスタリングアルゴリズムの有限サンプル解析を行う。
ここでは,ミニマックス最適誤クラスタ化率を,体制$|theta infty$で達成することを示す。
論文 参考訳(メタデータ) (2020-05-21T17:51:30Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
我々は、割引決定過程における政策評価の問題に対処し、生成モデルの下で、ll_infty$errorに対するマルコフに依存した保証を提供する。
我々は、ポリシー評価のために、局所ミニマックス下限の両漸近バージョンと非漸近バージョンを確立し、アルゴリズムを比較するためのインスタンス依存ベースラインを提供する。
論文 参考訳(メタデータ) (2020-03-16T17:15:28Z) - Error bounds in estimating the out-of-sample prediction error using
leave-one-out cross validation in high-dimensions [19.439945058410203]
高次元状態におけるサンプル外リスク推定の問題について検討する。
広範囲にわたる経験的証拠は、アウト・ワン・アウト・クロス・バリデーションの正確さを裏付ける。
この理論の技術的利点の1つは、拡張可能な近似LOに関する最近の文献から得られたいくつかの結果を明確化し、接続することができることである。
論文 参考訳(メタデータ) (2020-03-03T20:07:07Z) - Communication-Efficient Distributed Estimator for Generalized Linear
Models with a Diverging Number of Covariates [7.427903819459701]
2ラウンドの通信により,大規模分散データに対する効率の良い推定器を得る手法が提案されている。
本手法では,サーバ数に対する仮定をより緩和し,現実のアプリケーションに対して実用的である。
論文 参考訳(メタデータ) (2020-01-17T08:51:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。