論文の概要: Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
- arxiv url: http://arxiv.org/abs/2501.05795v2
- Date: Wed, 22 Jan 2025 05:34:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:52:32.482907
- Title: Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
- Title(参考訳): 多目的最適化を用いたモデル多重度下でのロバストな対実的説明
- Authors: Keita Kinjo,
- Abstract要約: 複数の機械学習モデルが存在する場合、対実的説明(CE)は堅牢ではない。
本稿では,新しい視点を導入する頑健なCEと,それを生成するための多目的最適化手法を提案する。
本研究は、機械学習における説明可能性、意思決定、機械学習に基づく行動計画など、幅広い研究分野に貢献する。
- 参考スコア(独自算出の注目度): 0.8702432681310401
- License:
- Abstract: In recent years, explainability in machine learning has gained importance. In this context, counterfactual explanation (CE), which is an explanation method that uses examples, has attracted attention. However, it has been pointed out that CE is not robust when there are multiple machine-learning models. These problems are important when using machine learning to make safe decisions. In this paper, we propose robust CEs that introduce a new viewpoint - Pareto improvement - and a method that uses multi-objective optimization to generate it. To evaluate the proposed method, we conducted experiments using both simulated and actual data. The results demonstrate that the proposed method is robust and useful. We believe that this research will contribute to a wide range of research areas, such as explainability in machine learning, decision-making, and action planning based on machine learning.
- Abstract(参考訳): 近年,機械学習における説明可能性の重要性が高まっている。
この文脈では、実例を用いた説明法である反実的説明(CE)が注目されている。
しかし、複数の機械学習モデルが存在する場合、CEは堅牢ではないことが指摘されている。
これらの問題は、機械学習を使用して安全な意思決定を行う場合に重要である。
本稿では,新しい視点 - Pareto の改良 - を取り入れた堅牢な CE と,それを生成するための多目的最適化手法を提案する。
提案手法を評価するために,シミュレーションデータと実データの両方を用いて実験を行った。
その結果,提案手法は頑健で有用であることが示唆された。
本研究は,機械学習における説明可能性,意思決定,機械学習に基づく行動計画など,幅広い研究領域に寄与すると考えられる。
関連論文リスト
- An effect analysis of the balancing techniques on the counterfactual explanations of student success prediction models [0.0]
学習分析における主要な研究方向の1つは、様々な機械学習手法を用いて学習者の成功を予測することである。
いくつかのカウンターファクト生成手法は、多くの可能性を秘めているが、その特徴は効果的に動作可能で、因果的でなければならない。
本稿では, 対実説明法, 多目的対実説明法, 最近対実説明法など, 一般的に用いられている対実生成法の有効性を考察する。
論文 参考訳(メタデータ) (2024-08-01T16:19:08Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
XAIとモデリング技術の不整合は、これらの説明可能性アプローチの有効性に疑念を投げかけるという望ましくない効果をもたらす可能性がある。
我々はXAI, SHapley Additive exPlanations (Shap) において, 一般的なモデルに依存しない手法に対する系統的摂動解析を提案する。
我々は、一般的な機械学習とディープラーニングの手法のスイートと、静的ケースホールドで生成された説明の正確さを定量化するためのメトリクスの中で、動的推論の設定において、相対的な特徴重要度を生成するアルゴリズムを考案した。
論文 参考訳(メタデータ) (2024-05-30T16:04:35Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
視覚的対物的説明法(VCE)の最新手法は、深い生成モデルの力を利用して、印象的な画質の高次元画像の新しい例を合成する。
評価手順が大きく異なり,個々の実例の視覚検査や小規模なユーザスタディなど,これらのVCE手法の性能を比較することは,現時点では困難である。
本稿では,VCE手法の体系的,定量的評価のためのフレームワークと,使用する指標の最小セットを提案する。
論文 参考訳(メタデータ) (2023-08-11T12:22:37Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z) - A Survey on the Integration of Machine Learning with Sampling-based
Motion Planning [9.264471872135623]
本調査は、サンプリングベースモーションプランナー(SBMP)の計算効率と適用性を改善するための機械学習の取り組みを概観する。
まず、ノードサンプリング、衝突検出、距離または最も近い隣人、ローカルプランニング、終了条件など、SBMPのキーコンポーネントの強化に学習がどのように使われているかについて論じる。
また、機械学習を用いてロボットのデータ駆動モデルを提供し、それをSBMPで使用する方法についても論じている。
論文 参考訳(メタデータ) (2022-11-15T18:13:49Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - A Weighted Solution to SVM Actionability and Interpretability [0.0]
実行可能性(Actionability)は、機械学習モデルの解釈可能性や説明可能性と同じくらい重要であり、進行中で重要な研究トピックである。
本稿では,線形SVMモデルと非線形SVMモデルの両方において,動作可能性の問題に対する解を求める。
論文 参考訳(メタデータ) (2020-12-06T20:35:25Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。