論文の概要: From Balance to Breach: Cyber Threats to Battery Energy Storage Systems
- arxiv url: http://arxiv.org/abs/2501.05923v1
- Date: Fri, 10 Jan 2025 12:33:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:25:56.770900
- Title: From Balance to Breach: Cyber Threats to Battery Energy Storage Systems
- Title(参考訳): バランスから漂流へ:サイバー脅威から蓄電池システムへ
- Authors: Frans Öhrström, Joakim Oscarsson, Zeeshan Afzal, János Dani, Mikael Asplund,
- Abstract要約: 電力貯蔵システムは、グリッドバランスを維持するためのソリューションとして、現代の電力システムにおいて重要な部分である。
本稿では,これらのシステムを理解するための一歩を踏み出し,対象とするサイバー攻撃の効果について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Battery energy storage systems are an important part of modern power systems as a solution to maintain grid balance. However, such systems are often remotely managed using cloud-based control systems. This exposes them to cyberattacks that could result in catastrophic consequences for the electrical grid and the connected infrastructure. This paper takes a step towards advancing understanding of these systems and investigates the effects of cyberattacks targeting them. We propose a reference model for an electrical grid cloud-controlled load-balancing system connected to remote battery energy storage systems. The reference model is evaluated from a cybersecurity perspective by implementing and simulating various cyberattacks. The results reveal the system's attack surface and demonstrate the impact of cyberattacks that can criticaly threaten the security and stability of the electrical grid.
- Abstract(参考訳): 電力貯蔵システムは、グリッドバランスを維持するためのソリューションとして、現代の電力システムにおいて重要な部分である。
しかし、このようなシステムはクラウドベースの制御システムを使ってリモートで管理されることが多い。
これにより、それらはサイバー攻撃に晒され、電力網と接続されたインフラに壊滅的な結果をもたらす可能性がある。
本稿では,これらのシステムを理解するための一歩を踏み出し,対象とするサイバー攻撃の効果について検討する。
本稿では,遠隔電力貯蔵システムに接続された電力グリッドクラウド制御負荷分散システムの参照モデルを提案する。
参照モデルは、様々なサイバーアタックを実装し、シミュレーションすることで、サイバーセキュリティの観点から評価される。
結果は、システムの攻撃面を明らかにし、電力網のセキュリティと安定性を脅かすサイバー攻撃の影響を実証する。
関連論文リスト
- Smart Grid Security: A Verified Deep Reinforcement Learning Framework to Counter Cyber-Physical Attacks [2.159496955301211]
スマートグリッドは戦略的なサイバー物理攻撃に対して脆弱である。
悪意のある攻撃は、高ワットのIoT(Internet of Things)ボットネットデバイスを使用して電力需要を操作することができる。
グリッドオペレータは、設計段階でサイバー物理攻撃の潜在的なシナリオを見落としている。
本稿では,スマートグリッドに対する攻撃を緩和する安全な深層強化学習(DRL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T05:26:20Z) - Threat analysis and adversarial model for Smart Grids [1.7482569079741024]
このスマートパワーグリッドのサイバードメインは、新たな脅威を開拓する。
規制機関、業界、アカデミーを含む様々な利害関係者は、サイバーリスクを緩和し軽減するためのセキュリティメカニズムの提供に取り組んでいる。
近年の研究では、グリッド実践者や学術専門家の間で、学術が提案する脅威の実現可能性と結果に関する合意の欠如が示されている。
これは、攻撃者の完全な能力と目標に基づいて脅威を評価しない、不適切なシミュレーションモデルが原因である。
論文 参考訳(メタデータ) (2024-06-17T16:33:46Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Cybersecurity Challenges of Power Transformers [3.509488301177195]
情報、データ分析、通信システムへの新たな電力グリッド技術への依存は、全電力ネットワークをサイバー脅威に脆弱にする。
電力トランスは電力グリッドの中で重要な役割を担い、現在では工場のアドオンやインテリジェントな監視システムを通じて拡張されている。
本稿では,電力ネットワークにおける電力変圧器の脆弱性と攻撃ベクトル,攻撃シナリオ,攻撃の危険性について検討する。
論文 参考訳(メタデータ) (2023-02-25T21:08:59Z) - Hyperloop: A Cybersecurity Perspective [56.82349944873289]
ハイパーループエコシステムのさまざまなコンポーネント間の相互接続におけるサイバーセキュリティの課題について、初めて分析する。
インフラ管理のアプローチとそのセキュリティ問題について検討する。
ハイパーループ設計の安全性に対する対策と今後の方向性について論じる。
論文 参考訳(メタデータ) (2022-09-07T12:10:36Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Internet of Predictable Things (IoPT) Framework to Increase
Cyber-Physical System Resiliency [0.0]
本稿では,予測可能なモノのインターネット(IoPT)の概念を提案する。
高度なデータ分析と機械学習手法を取り入れ、サイバーセキュリティリスクに対するサイバーフィジカルシステムのレジリエンスを高めている。
論文 参考訳(メタデータ) (2021-01-19T19:01:56Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
ThreatRaptorは、OSCTIを使用してコンピュータシステムにおけるサイバー脅威ハンティングを容易にするシステムです。
ThreatRaptorは、(1)構造化OSCTIテキストから構造化された脅威行動を抽出する非監視で軽量で正確なNLPパイプライン、(2)簡潔で表現力のあるドメイン固有クエリ言語であるTBQLを提供し、悪意のあるシステムアクティビティを探し、(3)抽出された脅威行動からTBQLクエリを自動的に合成するクエリ合成メカニズムを提供する。
論文 参考訳(メタデータ) (2021-01-17T19:44:09Z) - Machine Learning in Generation, Detection, and Mitigation of
Cyberattacks in Smart Grid: A Survey [1.3299946892361474]
スマートグリッド(スマートグリッド、英: Smart grid、SG)は、現代のサイバー・物理機器を利用した複雑なサイバー物理システムである。
サイバー攻撃は、最先端のシステムの使用と進歩に直面する主要な脅威である。
機械学習(ML)は、攻撃者やシステムオペレーターによるSGのサイバー攻撃を悪用し、防御するために使用されている。
論文 参考訳(メタデータ) (2020-09-01T05:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。