論文の概要: A Hybrid Virtual Element Method and Deep Learning Approach for Solving One-Dimensional Euler-Bernoulli Beams
- arxiv url: http://arxiv.org/abs/2501.06925v1
- Date: Sun, 12 Jan 2025 20:34:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:23:05.639287
- Title: A Hybrid Virtual Element Method and Deep Learning Approach for Solving One-Dimensional Euler-Bernoulli Beams
- Title(参考訳): ハイブリッド仮想要素法と深層学習による一次元オイラー・ベルヌーリビームの解法
- Authors: Paulo Akira F. Enabe, Rodrigo Provasi,
- Abstract要約: 深層学習にVirtual Element Method(VEM)を統合するハイブリッドフレームワークを提案する。
主な目的は、様々な物質変位のフィールドを予測できるデータ駆動サロゲートモデルを探索することである。
ニューラルネットワークアーキテクチャを導入して、ノイズと物質固有のデータを別々に処理し、複雑なインタラクションを効果的にキャプチャする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: A hybrid framework integrating the Virtual Element Method (VEM) with deep learning is presented as an initial step toward developing efficient and flexible numerical models for one-dimensional Euler-Bernoulli beams. The primary aim is to explore a data-driven surrogate model capable of predicting displacement fields across varying material and geometric parameters while maintaining computational efficiency. Building upon VEM's ability to handle higher-order polynomials and non-conforming discretizations, the method offers a robust numerical foundation for structural mechanics. A neural network architecture is introduced to separately process nodal and material-specific data, effectively capturing complex interactions with minimal reliance on large datasets. To address challenges in training, the model incorporates Sobolev training and GradNorm techniques, ensuring balanced loss contributions and enhanced generalization. While this framework is in its early stages, it demonstrates the potential for further refinement and development into a scalable alternative to traditional methods. The proposed approach lays the groundwork for advancing numerical and data-driven techniques in beam modeling, offering a foundation for future research in structural mechanics.
- Abstract(参考訳): 深層学習にVirtual Element Method(VEM)を統合するハイブリッドフレームワークを, 1次元Euler-Bernoulliビームの効率的かつ柔軟な数値モデル開発に向けた最初のステップとして提示する。
主な目的は、計算効率を保ちながら、様々な材料や幾何パラメータにわたる変位場を予測できるデータ駆動サロゲートモデルを探索することである。
VEMの高階多項式と非整合離散化を扱う能力に基づいて、この手法は構造力学の堅牢な数値基盤を提供する。
ニューラルネットワークアーキテクチャを導入して、ノイズと物質固有のデータを別々に処理し、大規模なデータセットへの依存を最小限に抑えて、複雑なインタラクションを効果的にキャプチャする。
トレーニングの課題に対処するため、モデルはSobolevトレーニングとGradNormテクニックを導入し、バランスの取れた損失のコントリビューションを確保し、一般化を強化している。
このフレームワークは初期段階にあるが、従来の方法に代わるスケーラブルな代替品として、さらなる洗練と開発の可能性を示している。
提案手法は,ビームモデリングにおける数値およびデータ駆動技術の発展の基礎を定め,今後の構造力学研究の基礎となるものである。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - A parametric framework for kernel-based dynamic mode decomposition using deep learning [0.0]
提案されたフレームワークは、オフラインとオンラインの2つのステージで構成されている。
オンラインステージでは、これらのLANDOモデルを活用して、所望のタイミングで新しいデータを生成する。
高次元力学系に次元還元法を適用して, トレーニングの計算コストを低減させる。
論文 参考訳(メタデータ) (2024-09-25T11:13:50Z) - Data-Driven Computing Methods for Nonlinear Physics Systems with Geometric Constraints [0.7252027234425334]
本稿では、物理に基づく先行技術と高度な機械学習技術との相乗効果を生かした、新しいデータ駆動型フレームワークを提案する。
本フレームワークでは, 特定の非線形系のクラスに合わせて, 特定の物理系を組み込んだ4つのアルゴリズムを紹介する。
これらの事前の統合はまた、ニューラルネットワークの表現力を高め、物理的現象に典型的な複雑なパターンをキャプチャすることを可能にする。
論文 参考訳(メタデータ) (2024-06-20T23:10:41Z) - Scaling up Probabilistic PDE Simulators with Structured Volumetric Information [23.654711580674885]
本稿では,一般的な有限体積法と相補的数値線形代数法を組み合わせた離散化手法を提案する。
時相津波シミュレーションを含む実験では、従来のコロケーションに基づく手法よりも、このアプローチのスケーリング挙動が大幅に改善された。
論文 参考訳(メタデータ) (2024-06-07T15:38:27Z) - Generalizable data-driven turbulence closure modeling on unstructured grids with differentiable physics [1.8749305679160366]
本研究では,Navier-Stokes方程式を解くために,有限要素ソルバ内にディープラーニングモデルを埋め込むフレームワークを提案する。
後方向きのステップを流れる流れの手法を検証し,その性能を新しい測地で検証する。
我々は,GNNに基づくクロージャモデルについて,解法制約付き最適化としてクロージャモデリングを解釈することにより,データ制限シナリオで学習可能であることを示す。
論文 参考訳(メタデータ) (2023-07-25T14:27:49Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Meshless physics-informed deep learning method for three-dimensional
solid mechanics [0.0]
深層学習とコロケーション法は統合され、構造の変形を記述する偏微分方程式を解くために用いられる。
我々は, 線形弾性, 変形が大きい過弾性(ネオ・フーカン), 等方的およびキネマティック硬化を有するフォン・ミーゼス塑性の2種類の材料について検討した。
論文 参考訳(メタデータ) (2020-12-02T21:40:37Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。