論文の概要: Cyber Shadows: Neutralizing Security Threats with AI and Targeted Policy Measures
- arxiv url: http://arxiv.org/abs/2501.09025v1
- Date: Fri, 03 Jan 2025 09:26:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-19 08:09:31.886289
- Title: Cyber Shadows: Neutralizing Security Threats with AI and Targeted Policy Measures
- Title(参考訳): サイバーシャドウ:AIとターゲティングポリシーでセキュリティの脅威を中立化
- Authors: Marc Schmitt, Pantelis Koutroumpis,
- Abstract要約: サイバー脅威は個人、組織、社会レベルでリスクを引き起こす。
本稿では,AI駆動型ソリューションと政策介入を統合した包括的サイバーセキュリティ戦略を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The digital age, driven by the AI revolution, brings significant opportunities but also conceals security threats, which we refer to as cyber shadows. These threats pose risks at individual, organizational, and societal levels. This paper examines the systemic impact of these cyber threats and proposes a comprehensive cybersecurity strategy that integrates AI-driven solutions, such as Intrusion Detection Systems (IDS), with targeted policy interventions. By combining technological and regulatory measures, we create a multilevel defense capable of addressing both direct threats and indirect negative externalities. We emphasize that the synergy between AI-driven solutions and policy interventions is essential for neutralizing cyber threats and mitigating their negative impact on the digital economy. Finally, we underscore the need for continuous adaptation of these strategies, especially in response to the rapid advancement of autonomous AI-driven attacks, to ensure the creation of secure and resilient digital ecosystems.
- Abstract(参考訳): AI革命によって引き起こされたデジタル時代は、大きな機会をもたらすだけでなく、サイバーシャドーと呼ばれるセキュリティの脅威も隠している。
これらの脅威は個人、組織、社会的レベルでリスクを引き起こす。
本稿では、これらのサイバー脅威のシステム的影響について検討し、AI駆動型ソリューションである侵入検知システム(IDS)と政策介入を統合した包括的サイバーセキュリティ戦略を提案する。
技術的および規制的措置を組み合わせることで、直接脅威と間接的な負の外部性の両方に対処できる多段階防衛を創出する。
AI駆動型ソリューションと政策介入の相乗効果は、サイバー脅威を中和し、デジタル経済への悪影響を軽減するために不可欠である、と私たちは強調する。
最後に、安全でレジリエントなデジタルエコシステムの創造を保証するために、これらの戦略の継続的適応の必要性、特に自律的なAI駆動型攻撃の急速な進展に対応することの必要性を強調します。
関連論文リスト
- Considerations Influencing Offense-Defense Dynamics From Artificial Intelligence [0.0]
AIは防御能力を向上するだけでなく、悪意ある搾取と大規模な社会的危害のための道も提示する。
本稿では、AIシステムが主に脅威を生じているか、社会に保護的利益をもたらすかに影響を及ぼす主要な要因をマップし、検証するための分類法を提案する。
論文 参考訳(メタデータ) (2024-12-05T10:05:53Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
本稿では,AIの誤用によるエスカレート脅威,特にLarge Language Models(LLMs)の使用について述べる。
一連の制御された実験を通じて、これらのモデルがどのようにして倫理的およびプライバシー保護を回避し、効果的にサイバー攻撃を発生させるかを実証する。
私たちはまた、サイバー攻撃の自動化と実行のために特別に設計されたカスタマイズされた微調整のLLMであるOccupy AIを紹介します。
論文 参考訳(メタデータ) (2024-08-23T02:56:13Z) - The Shadow of Fraud: The Emerging Danger of AI-powered Social Engineering and its Possible Cure [30.431292911543103]
社会工学(SE)攻撃は個人と組織双方にとって重大な脅威である。
人工知能(AI)の進歩は、よりパーソナライズされ説得力のある攻撃を可能にすることによって、これらの脅威を強化する可能性がある。
本研究は、SE攻撃機構を分類し、その進化を分析し、これらの脅威を測定する方法を探る。
論文 参考訳(メタデータ) (2024-07-22T17:37:31Z) - AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
AIリスクマネジメントの利害関係者は、安全とセキュリティの間のニュアンス、シナジー、相互作用を意識すべきである、と私たちは主張する。
我々は、AIの安全性とAIのセキュリティの違いと相互作用を明らかにするために、統一された参照フレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-29T21:00:47Z) - The MESA Security Model 2.0: A Dynamic Framework for Mitigating Stealth Data Exfiltration [0.0]
ステルスデータ流出は、隠蔽侵入、拡張された検出不能、機密データの不正な拡散を特徴とする重要なサイバー脅威である。
以上の結果から,従来の防衛戦略はこれらの高度な脅威に対処するには不十分であることが判明した。
この複雑な風景をナビゲートする上で、潜在的な脅威を予測し、防衛を継続的に更新することが重要です。
論文 参考訳(メタデータ) (2024-05-17T16:14:45Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - A Technological Perspective on Misuse of Available AI [41.94295877935867]
民間人工知能(AI)の悪意ある誤用は、国家や国際レベルでのセキュリティに深刻な脅威をもたらす可能性がある。
既存のオープンなAI技術が、いかに誤用されているかを示します。
我々は、政治的、デジタル的、物理的セキュリティを脅かす、潜在的に誤用されたAIの典型的なユースケースを3つ開発する。
論文 参考訳(メタデータ) (2024-03-22T16:30:58Z) - Autonomous Threat Hunting: A Future Paradigm for AI-Driven Threat Intelligence [0.0]
人工知能(AI)と従来の脅威インテリジェンス方法論の融合を概観する。
従来の脅威インテリジェンスプラクティスに対するAIと機械学習の変革的な影響を検査する。
ケーススタディと評価は、AI駆動の脅威インテリジェンスを採用する組織から学んだ成功物語と教訓を強調している。
論文 参考訳(メタデータ) (2023-12-30T17:36:08Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。