論文の概要: Gene Regulatory Network Inference in the Presence of Selection Bias and Latent Confounders
- arxiv url: http://arxiv.org/abs/2501.10124v2
- Date: Tue, 04 Nov 2025 18:50:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:25.959969
- Title: Gene Regulatory Network Inference in the Presence of Selection Bias and Latent Confounders
- Title(参考訳): 選択バイアスと潜在共同設立者の存在下での遺伝子制御ネットワーク推論
- Authors: Gongxu Luo, Haoyue Dai, Loka Li, Chengqian Gao, Boyang Sun, Kun Zhang,
- Abstract要約: 選択はユビキタスであり、無視されたり、真の規則と混同されたりすると、因果解釈の欠陥や誤った介入勧告につながる可能性があることを示す。
本稿では、摂動データを利用して、真の遺伝子制御関係と、同値クラスへの選択と共役の非調節機構を明らかにするアルゴリズムであるGISLを提案する。
- 参考スコア(独自算出の注目度): 16.010515254476626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gene regulatory network inference (GRNI) aims to discover how genes causally regulate each other from gene expression data. It is well-known that statistical dependencies in observed data do not necessarily imply causation, as spurious dependencies may arise from latent confounders, such as non-coding RNAs. Numerous GRNI methods have thus been proposed to address this confounding issue. However, dependencies may also result from selection--only cells satisfying certain survival or inclusion criteria are observed--while these selection-induced spurious dependencies are frequently overlooked in gene expression data analyses. In this work, we show that such selection is ubiquitous and, when ignored or conflated with true regulations, can lead to flawed causal interpretation and misguided intervention recommendations. To address this challenge, a fundamental question arises: can we distinguish dependencies due to regulation, confounding, and crucially, selection? We show that gene perturbations offer a simple yet effective answer: selection-induced dependencies are symmetric under perturbation, while those from regulation or confounding are not. Building on this motivation, we propose GISL (Gene regulatory network Inference in the presence of Selection bias and Latent confounders), a principled algorithm that leverages perturbation data to uncover both true gene regulatory relations and non-regulatory mechanisms of selection and confounding up to the equivalence class. Experiments on synthetic and real-world gene expression data demonstrate the effectiveness of our method.
- Abstract(参考訳): 遺伝子制御ネットワーク推論(GRNI)は、遺伝子が遺伝子発現データから相互に因果的に制御する方法を発見することを目的としている。
観測データの統計的依存関係が必ずしも因果関係を含まないことはよく知られている。
このようにして、この相反する問題に対処するために多くのGRNI法が提案されている。
しかしながら、依存関係は、特定の生存条件を満たす選択のみの細胞が観察され、一方、これらの選択によって引き起こされる刺激的な依存関係は、遺伝子発現データ解析でしばしば見過ごされる。
本研究は,このような選択がユビキタスであり,無視されるか,あるいは真の規則と混同された場合には,因果解釈の欠陥や誤った介入勧告につながる可能性があることを示す。
この課題に対処するために、根本的な疑問が生じる: 規制やコンファウンディング、決定的な選択による依存関係を区別できるか?
遺伝子摂動は、選択による依存は摂動の下で対称的であるが、調節や共起による依存は対称ではない。
このモチベーションを生かしたGISL(Gene Regulation Network Inference in the presence of Selection bias and Latent confounders)を提案する。
合成および実世界の遺伝子発現データを用いた実験により,本手法の有効性が示された。
関連論文リスト
- Unlasting: Unpaired Single-Cell Multi-Perturbation Estimation by Dual Conditional Diffusion Implicit Bridges [68.98973318553983]
本稿では,Dual Diffusion Implicit Bridges (DDIB) に基づくフレームワークを提案する。
我々は、生物学的に意味のある方法で摂動シグナルを伝達するために遺伝子制御ネットワーク(GRN)情報を統合する。
また、サイレント遺伝子を予測し、生成したプロファイルの品質を向上させるためのマスキング機構も組み込んだ。
論文 参考訳(メタデータ) (2025-06-26T09:05:38Z) - Multi-omic Causal Discovery using Genotypes and Gene Expression [0.0]
転写データの祖先関係を推定するための制約に基づく因果アルゴリズムであるGENESISを導入する。
遺伝子型を固定因果アンカーとして統合することにより、genESISは古典因果発見アルゴリズムに「原則的出発」を提供する。
この枠組みは、複雑な形質の因果経路を明らかにするための強力な経路を提供し、機能ゲノム学、薬物発見、精密医療への有望な応用を提供する。
論文 参考訳(メタデータ) (2025-05-21T11:52:23Z) - GRAPE: Heterogeneous Graph Representation Learning for Genetic Perturbation with Coding and Non-Coding Biotype [51.58774936662233]
遺伝子制御ネットワーク(GRN)の構築は、遺伝的摂動の影響を理解し予測するために不可欠である。
本研究では,事前学習した大規模言語モデルとDNAシークエンスモデルを用いて,遺伝子記述やDNAシークエンスデータから特徴を抽出する。
我々は、遺伝子摂動において初めて遺伝子バイオタイプ情報を導入し、細胞プロセスの制御において異なるバイオタイプを持つ遺伝子の異なる役割をシミュレートした。
論文 参考訳(メタデータ) (2025-05-06T03:35:24Z) - Learning to Discover Regulatory Elements for Gene Expression Prediction [59.470991831978516]
Seq2Expは、ターゲット遺伝子発現を駆動する制御要素を発見し、抽出するために設計されたSequence to Expressionネットワークである。
本手法は, エピジェノミックシグナル, DNA 配列とその関連因子の因果関係を捉える。
論文 参考訳(メタデータ) (2025-02-19T03:25:49Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
本稿では,98k塩基対 (bp) と1.2Bパラメータからなるゲノム基盤モデル GENERator を提案する。
DNAの386Bbpからなる拡張データセットに基づいて、GENERatorは、確立されたベンチマークと新しく提案されたベンチマークの両方で最先端のパフォーマンスを実証する。
また、特に特定のアクティビティプロファイルを持つエンハンサーシーケンスを即応的に生成することで、シーケンス最適化において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2025-02-11T05:39:49Z) - Cross-Attention Graph Neural Networks for Inferring Gene Regulatory Networks with Skewed Degree Distribution [9.919024883502322]
クロスアテンション複合デュアルグラフ埋め込みモデル(XATGRN)
我々のモデルは、様々なデータセットで既存の最先端メソッドよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-12-18T10:56:40Z) - Gene Regulatory Network Inference from Pre-trained Single-Cell Transcriptomics Transformer with Joint Graph Learning [10.44434676119443]
単一細胞RNAシークエンシング(scRNA-seq)データから遺伝子制御ネットワーク(GRN)を推定することは複雑である。
本研究では,単一セルBERTを用いた事前学習型トランスモデル(scBERT)を活用することで,この問題に対処する。
本稿では,単一セル言語モデルによって学習されたリッチな文脈表現と,GRNで符号化された構造化知識を組み合わせた,新しい共同グラフ学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-25T16:42:08Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - GENER: A Parallel Layer Deep Learning Network To Detect Gene-Gene
Interactions From Gene Expression Data [0.7660368798066375]
本稿では,遺伝子発現データを用いた遺伝子関係の同定専用に設計された並列層深層学習ネットワークを提案する。
本モデルでは,BioGRIDとDREAM5の組み合わせによる平均AUROCスコア0.834を達成し,遺伝子間相互作用を予測する競合手法よりも優れていた。
論文 参考訳(メタデータ) (2023-10-05T15:45:53Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
ゲノムワイド・アソシエーション(GWAS)は、疾患に感受性のある遺伝的変数を同定することができる。
遺伝的効果に絡み合った遺伝的変数は、しばしば低い効果サイズを示す。
本稿では,FCSNet(Feature Co-Selection Network)という,GWASのための新しい特徴選択機構を提案する。
論文 参考訳(メタデータ) (2023-08-12T01:28:26Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
遺伝子調節ネットワーク(GRN)は、遺伝子発現と細胞機能を制御する遺伝子とその産物間の相互作用を記述する。
既存の方法は、チャレンジ(1)、ダイナミックスから循環構造を識別すること、あるいはチャレンジ(2)、DAGよりも複雑なベイズ後部を学習することに焦点を当てるが、両方ではない。
本稿では、RNAベロシティ技術を用いて遺伝子発現の「速度」を推定できるという事実を活用し、両方の課題に対処するアプローチを開発する。
論文 参考訳(メタデータ) (2023-02-08T16:36:40Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
本稿では,実世界の介入データに対する因果推論手法を評価するベンチマークスイートCausalBenchを紹介する。
CaulBenchには、新しい分散ベースの介入メトリクスを含む、生物学的に動機付けられたパフォーマンスメトリクスが含まれている。
論文 参考訳(メタデータ) (2022-10-31T13:04:07Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Netは、DBG構造化システムにおけるGranger因果推論のためのラタグメッセージパッシングを備えたグラフニューラルネットワークに基づくフレームワークである。
我々の応用は、特定の遺伝子の調節を仲介するゲノム座を同定する単一セルマルチモーダルデータの解析である。
論文 参考訳(メタデータ) (2022-10-18T21:15:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。