Multivariate Wireless Link Quality Prediction Based on Pre-trained Large Language Models
- URL: http://arxiv.org/abs/2501.11247v1
- Date: Mon, 20 Jan 2025 03:21:20 GMT
- Title: Multivariate Wireless Link Quality Prediction Based on Pre-trained Large Language Models
- Authors: Zhuangzhuang Yan, Xinyu Gu, Shilong Fan, Zhenyu Liu,
- Abstract summary: GAT-LLM is a novel multivariate wireless link quality prediction model that combines Large Language Models (LLMs) with Graph Attention Networks (GAT)
We show that GAT-LLM significantly improves the accuracy and robustness of link quality prediction, particularly in multi-step prediction scenarios.
- Score: 2.5971582867976934
- License:
- Abstract: Accurate and reliable link quality prediction (LQP) is crucial for optimizing network performance, ensuring communication stability, and enhancing user experience in wireless communications. However, LQP faces significant challenges due to the dynamic and lossy nature of wireless links, which are influenced by interference, multipath effects, fading, and blockage. In this paper, we propose GAT-LLM, a novel multivariate wireless link quality prediction model that combines Large Language Models (LLMs) with Graph Attention Networks (GAT) to enable accurate and reliable multivariate LQP of wireless communications. By framing LQP as a time series prediction task and appropriately preprocessing the input data, we leverage LLMs to improve the accuracy of link quality prediction. To address the limitations of LLMs in multivariate prediction due to typically handling one-dimensional data, we integrate GAT to model interdependencies among multiple variables across different protocol layers, enhancing the model's ability to handle complex dependencies. Experimental results demonstrate that GAT-LLM significantly improves the accuracy and robustness of link quality prediction, particularly in multi-step prediction scenarios.
Related papers
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.
Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.
We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - Csi-LLM: A Novel Downlink Channel Prediction Method Aligned with LLM Pre-Training [3.2721332912474668]
Large language models (LLMs) exhibit strong pattern recognition and reasoning abilities over complex sequences.
We introduce Csi-LLM, a novel LLM-powered downlink channel prediction technique that models variable-step historical sequences.
To ensure effective cross-modality application, we align the design and training of Csi-LLM with the processing of natural language tasks.
arXiv Detail & Related papers (2024-08-15T11:39:23Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model [0.0]
We introduce the Multi-Channel Data Fusion Network (MCDFN), a hybrid architecture that integrates CNN, Long Short-Term Memory networks (LSTM), and Gated Recurrent Units (GRU)
Our comparative benchmarking demonstrates that MCDFN outperforms seven other deep-learning models.
This research advances demand forecasting methodologies and offers practical guidelines for integrating MCDFN into supply chain systems.
arXiv Detail & Related papers (2024-05-24T14:30:00Z) - Reliable Feature Selection for Adversarially Robust Cyber-Attack Detection [0.0]
This work presents a feature selection and consensus process that combines multiple methods and applies them to several network datasets.
By using an improved dataset with more data diversity, selecting the best time-related features and a more specific feature set, and performing adversarial training, the ML models were able to achieve a better adversarially robust generalization.
arXiv Detail & Related papers (2024-04-05T16:01:21Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
Uncertainty estimation in machine learning is paramount for enhancing the reliability and interpretability of predictive models.
We present an adaptation of the Multiple-Input Multiple-Output (MIMO) framework for pixel-wise regression tasks.
arXiv Detail & Related papers (2023-08-14T22:08:28Z) - Multi-fidelity surrogate modeling using long short-term memory networks [0.0]
We introduce a novel data-driven framework of multi-fidelity surrogate modeling for parametrized, time-dependent problems.
We show that the proposed multi-fidelity LSTM networks not only improve single-fidelity regression significantly, but also outperform the multi-fidelity models based on feed-forward neural networks.
arXiv Detail & Related papers (2022-08-05T12:05:02Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Interference Distribution Prediction for Link Adaptation in
Ultra-Reliable Low-Latency Communications [71.0558149440701]
Link adaptation (LA) is considered to be one of the bottlenecks to realize URLLC.
In this paper, we focus on predicting the signal to interference plus noise ratio at the user to enhance the LA.
We show that exploiting time correlation of the interference is an important enabler of URLLC.
arXiv Detail & Related papers (2020-07-01T07:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.