論文の概要: Lee and Seung (2000)'s Algorithms for Non-negative Matrix Factorization: A Supplementary Proof Guide
- arxiv url: http://arxiv.org/abs/2501.11341v2
- Date: Wed, 22 Jan 2025 06:48:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:30:30.273477
- Title: Lee and Seung (2000)'s Algorithms for Non-negative Matrix Factorization: A Supplementary Proof Guide
- Title(参考訳): Lee and Seung (2000)'s Algorithms for Non- negative Matrix Factorization: A Supplementary Proof Guide
- Authors: Sungjae Cho,
- Abstract要約: Lee and Seung (2000) は反復乗算更新アルゴリズムを用いて非負行列分解(NMF)の数値解を導入した。
本報告では,本論文で用いた証明の定式化と導出を理解するための補足的詳細について述べる。
- 参考スコア(独自算出の注目度): 2.0450716801079443
- License:
- Abstract: Lee and Seung (2000) introduced numerical solutions for non-negative matrix factorization (NMF) using iterative multiplicative update algorithms. These algorithms have been actively utilized as dimensionality reduction tools for high-dimensional non-negative data and learning algorithms for artificial neural networks. Despite a considerable amount of literature on the applications of the NMF algorithms, detailed explanations about their formulation and derivation are lacking. This report provides supplementary details to help understand the formulation and derivation of the proofs as used in the original paper.
- Abstract(参考訳): Lee and Seung (2000) は反復乗算更新アルゴリズムを用いて非負行列分解(NMF)の数値解を導入した。
これらのアルゴリズムは、高次元非負のデータと人工ニューラルネットワークの学習アルゴリズムの次元削減ツールとして積極的に活用されている。
NMFアルゴリズムの適用に関する多くの文献があるが、それらの定式化と導出に関する詳細な説明は乏しい。
本報告では,本論文で用いた証明の定式化と導出を理解するための補足的詳細について述べる。
関連論文リスト
- Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
低ランク構造を持つ強化学習(RL)における行列推定問題について検討した。
低ランク帯では、回収される行列は期待される腕の報酬を指定し、低ランクマルコフ決定プロセス(MDP)では、例えばMDPの遷移カーネルを特徴付ける。
簡単なスペクトルベースの行列推定手法は,行列の特異部分空間を効率よく復元し,ほぼ最小の入力誤差を示すことを示す。
論文 参考訳(メタデータ) (2023-10-10T17:06:41Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
我々はロバスト成分分析のためのアルゴリズムを設計する(A)
行列を低主行列とスパース主行列の和に分解する。
論文 参考訳(メタデータ) (2023-07-12T03:48:26Z) - A fast Multiplicative Updates algorithm for Non-negative Matrix Factorization [2.646309221150203]
本稿では,各サブプロブレムに対してヘッセン行列のより厳密な上界を構築することにより,乗法更新アルゴリズムの改善を提案する。
コンバージェンスはまだ保証されており、我々は実際に合成と実世界の両方のデータセットで、提案したfastMUアルゴリズムが通常の乗算更新アルゴリズムよりも数桁高速であることを示す。
論文 参考訳(メタデータ) (2023-03-31T12:09:36Z) - Non-Negative Matrix Factorization with Scale Data Structure Preservation [23.31865419578237]
本稿では,データ表現と次元縮小のために設計された非負行列分解法に属するモデルについて述べる。
この考え方は、NMFコスト関数に、元のデータポイントと変換されたデータポイントのペアの類似度行列のスケール関係を課すペナルティ項を追加することである。
提案したクラスタリングアルゴリズムは,既存のNMFベースのアルゴリズムや,実際のデータセットに適用した場合の多様体学習ベースのアルゴリズムと比較される。
論文 参考訳(メタデータ) (2022-09-22T09:32:18Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
非負の行列因子化(NMF)は、非負のデータを部品ベースの表現で表すことの有効性から、近年広く研究されている。
そこで本研究では,係数行列に対数ノルムを課した新しいNMF法を提案する。
提案手法のロバスト性を高めるために,$ell_2,log$-(pseudo) ノルムを新たに提案した。
論文 参考訳(メタデータ) (2022-04-22T11:38:10Z) - Nonnegative Matrix Factorization with Zellner Penalty [0.0]
非負行列ファクタリゼーション(NMF)は、非負データ行列を部分ベース、低次元、線形表現に分解する比較的新しい教師なし学習アルゴリズムである。
本稿では,データ依存的制約を用いたZellner non negative matrix factorization (ZNMF)を提案する。
ケンブリッジ ORL データベースを用いて,ZNMF アルゴリズムと他のよく知られた制約付きNMF アルゴリズムの顔認識性能を評価する。
論文 参考訳(メタデータ) (2020-12-07T18:11:02Z) - Nonnegative Matrix Factorization with Toeplitz Penalty [0.0]
NMF(Nonnegative Matrix Factorization)は、データマトリックスの線形、部分ベースの近似を生成する教師なし学習アルゴリズムである。
非データ依存の補助制約を利用した新しいNMFアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-07T13:49:23Z) - Positive Semidefinite Matrix Factorization: A Connection with Phase
Retrieval and Affine Rank Minimization [71.57324258813674]
位相探索(PR)とアフィンランク最小化(ARM)アルゴリズムに基づいてPSDMFアルゴリズムを設計可能であることを示す。
このアイデアに触発され、反復的ハードしきい値(IHT)に基づくPSDMFアルゴリズムの新たなファミリーを導入する。
論文 参考訳(メタデータ) (2020-07-24T06:10:19Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z) - Columnwise Element Selection for Computationally Efficient Nonnegative
Coupled Matrix Tensor Factorization [16.466065626950424]
非負のCMTF (N-CMTF) は、潜在パターン、予測、レコメンデーションを識別するための多くのアプリケーションで使われている。
本稿では,カラム単位の要素選択に基づいて計算効率の良いN-CMTF分解アルゴリズムを提案し,頻繁な勾配更新を防止する。
論文 参考訳(メタデータ) (2020-03-07T03:34:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。