Transforming Blood Cell Detection and Classification with Advanced Deep Learning Models: A Comparative Study
- URL: http://arxiv.org/abs/2410.15670v1
- Date: Mon, 21 Oct 2024 06:23:13 GMT
- Title: Transforming Blood Cell Detection and Classification with Advanced Deep Learning Models: A Comparative Study
- Authors: Shilpa Choudhary, Sandeep Kumar, Pammi Sri Siddhaarth, Guntu Charitasri,
- Abstract summary: This study utilizes a YOLOv10 model trained on Roboflow data with images resized to 640x640 pixels across varying epochs.
The results show that increased training epochs significantly enhance accuracy, precision, and recall, particularly in real-time blood cell detection & classification.
- Score: 2.3942577670144423
- License:
- Abstract: Efficient detection and classification of blood cells are vital for accurate diagnosis and effective treatment of blood disorders. This study utilizes a YOLOv10 model trained on Roboflow data with images resized to 640x640 pixels across varying epochs. The results show that increased training epochs significantly enhance accuracy, precision, and recall, particularly in real-time blood cell detection & classification. The YOLOv10 model outperforms MobileNetV2, ShuffleNetV2, and DarkNet in real-time performance, though MobileNetV2 and ShuffleNetV2 are more computationally efficient, and DarkNet excels in feature extraction for blood cell classification. This research highlights the potential of integrating deep learning models like YOLOv10, MobileNetV2, ShuffleNetV2, and DarkNet into clinical workflows, promising improvements in diagnostic accuracy and efficiency. Additionally, a new, well-annotated blood cell dataset was created and will be open-sourced to support further advancements in automatic blood cell detection and classification. The findings demonstrate the transformative impact of these models in revolutionizing medical diagnostics and enhancing blood disorder management
Related papers
- Detection and Classification of Acute Lymphoblastic Leukemia Utilizing Deep Transfer Learning [0.0]
This study proposes a novel approach for diagnosing leukemia across four stages.
We employed two Convolutional Neural Network (CNN) models as MobileNetV2 with an altered head and a custom model.
The custom model achieved an accuracy of 98.6%, while MobileNetV2 attained a superior accuracy of 99.69%.
arXiv Detail & Related papers (2025-01-24T04:16:03Z) - A study on deep feature extraction to detect and classify Acute Lymphoblastic Leukemia (ALL) [0.0]
Acute lymphoblastic leukaemia (ALL) is a blood malignancy that mainly affects adults and children.
This study looks into the use of deep learning, specifically Convolutional Neural Networks (CNNs) for the detection and classification of ALL.
With an 87% accuracy rate, the ResNet101 model produced the best results, closely followed by DenseNet121 and VGG19.
arXiv Detail & Related papers (2024-09-10T17:53:29Z) - Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
We introduce a novel approach for white blood cell classification based on neural cellular automata (NCA)
Our NCA-based method is significantly smaller in terms of parameters and exhibits robustness to domain shifts.
Our results demonstrate that NCA can be used for image classification, and they address key challenges of conventional methods.
arXiv Detail & Related papers (2024-04-08T14:59:53Z) - DiffusionEngine: Diffusion Model is Scalable Data Engine for Object
Detection [41.436817746749384]
Diffusion Model is a scalable data engine for object detection.
DiffusionEngine (DE) provides high-quality detection-oriented training pairs in a single stage.
arXiv Detail & Related papers (2023-09-07T17:55:01Z) - A Continual Learning Approach for Cross-Domain White Blood Cell
Classification [36.482007703764154]
We propose a rehearsal-based continual learning approach for class incremental and domain incremental scenarios in white blood cell classification.
To choose representative samples from previous tasks, we employ set selection based on the model's predictions.
We thoroughly evaluated our proposed approach on three white blood cell classification datasets that differ in color, resolution, and class composition.
arXiv Detail & Related papers (2023-08-24T09:38:54Z) - Benchmarking Deep Learning Frameworks for Automated Diagnosis of Ocular
Toxoplasmosis: A Comprehensive Approach to Classification and Segmentation [1.3701366534590498]
Ocular Toxoplasmosis (OT) is a common eye infection caused by T. gondii that can cause vision problems.
This research seeks to provide a guide for future researchers looking to utilise DL techniques and develop a cheap, automated, easy-to-use, and accurate diagnostic method.
arXiv Detail & Related papers (2023-05-18T13:42:15Z) - Sickle Cell Disease Severity Prediction from Percoll Gradient Images
using Graph Convolutional Networks [38.27767684024691]
Sickle cell disease (SCD) is a severe genetic hemoglobin disorder that results in premature destruction of red blood cells.
Our proposed method is the first computational approach for the difficult task of SCD severity prediction.
arXiv Detail & Related papers (2021-09-11T21:09:50Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - TE-YOLOF: Tiny and efficient YOLOF for blood cell detection [26.463853328783962]
Blood cell detection in microscopic images is an essential branch of medical image processing research.
In this work, an object detector based on YOLOF has been proposed to detect blood cell objects such as red blood cells, white blood cells and platelets.
For increasing efficiency and flexibility, the EfficientNet Convolutional Neural Network is utilized as the backbone for the proposed object detector.
arXiv Detail & Related papers (2021-08-27T14:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.