論文の概要: Talk to Right Specialists: Routing and Planning in Multi-agent System for Question Answering
- arxiv url: http://arxiv.org/abs/2501.07813v1
- Date: Tue, 14 Jan 2025 03:25:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 17:02:04.367344
- Title: Talk to Right Specialists: Routing and Planning in Multi-agent System for Question Answering
- Title(参考訳): 正しいスペシャリストとの対話 : 質問応答のための多エージェントシステムにおけるルーティングと計画
- Authors: Feijie Wu, Zitao Li, Fei Wei, Yaliang Li, Bolin Ding, Jing Gao,
- Abstract要約: RopMuraは、複数の知識ベースを統一的なRAGベースのエージェントに統合する、新しいマルチエージェントシステムである。
RopMuraには2つの重要なコンポーネントがある。知識境界に基づいて最も関連性の高いエージェントをインテリジェントに選択するルータと、複雑なマルチホップクエリを管理可能なステップに分解するプランナだ。
- 参考スコア(独自算出の注目度): 47.29580414645626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging large language models (LLMs), an agent can utilize retrieval-augmented generation (RAG) techniques to integrate external knowledge and increase the reliability of its responses. Current RAG-based agents integrate single, domain-specific knowledge sources, limiting their ability and leading to hallucinated or inaccurate responses when addressing cross-domain queries. Integrating multiple knowledge bases into a unified RAG-based agent raises significant challenges, including increased retrieval overhead and data sovereignty when sensitive data is involved. In this work, we propose RopMura, a novel multi-agent system that addresses these limitations by incorporating highly efficient routing and planning mechanisms. RopMura features two key components: a router that intelligently selects the most relevant agents based on knowledge boundaries and a planner that decomposes complex multi-hop queries into manageable steps, allowing for coordinating cross-domain responses. Experimental results demonstrate that RopMura effectively handles both single-hop and multi-hop queries, with the routing mechanism enabling precise answers for single-hop queries and the combined routing and planning mechanisms achieving accurate, multi-step resolutions for complex queries.
- Abstract(参考訳): 大きな言語モデル(LLM)を活用することで、エージェントは検索拡張生成(RAG)技術を使用して外部知識を統合し、応答の信頼性を高めることができる。
現在のRAGベースのエージェントは、単一のドメイン固有の知識ソースを統合し、その能力を制限するとともに、クロスドメインクエリに対処する際の幻覚的あるいは不正確な応答につながる。
複数の知識ベースを統一されたRAGベースのエージェントに統合することは、機密データに関わる場合の検索オーバーヘッドの増加やデータ主権など、大きな課題を提起する。
本研究では,これらの制約に高効率なルーティングと計画機構を取り入れた新しいマルチエージェントシステムであるRopMuraを提案する。
RopMuraには2つの重要なコンポーネントがある。知識境界に基づいて最も関連性の高いエージェントをインテリジェントに選択するルータと、複雑なマルチホップクエリを管理可能なステップに分解するプランナである。
実験の結果,RopMuraはシングルホップクエリとマルチホップクエリの両方を効果的に処理し,単一ホップクエリの正確な解答を可能にするルーティング機構と,複雑なクエリの高精度なマルチステップ解決を実現するためのルーティングと計画の複合機構が得られた。
関連論文リスト
- HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation [11.53083922927901]
HM-RAGは階層型マルチエージェントマルチモーダルRAGフレームワークである。
構造化、非構造化、グラフベースのデータ間での動的知識合成のための協調知能の先駆者である。
論文 参考訳(メタデータ) (2025-04-13T06:55:33Z) - Knowledge-Aware Iterative Retrieval for Multi-Agent Systems [0.0]
本稿では,新しい大規模言語モデル (LLM) によるエージェントフレームワークを提案する。
動的に進化する知識を活用することで、クエリを反復的に洗練し、文脈的証拠をフィルタリングする。
提案システムは、更新されたコンテキストの競合的および協調的な共有をサポートする。
論文 参考訳(メタデータ) (2025-03-17T15:27:02Z) - Boost, Disentangle, and Customize: A Robust System2-to-System1 Pipeline for Code Generation [58.799397354312596]
大規模言語モデル(LLM)は、様々な領域、特にシステム1タスクにおいて顕著な機能を示した。
System2-to-System1法に関する最近の研究が急増し、推論時間計算によるシステム2の推論知識が探索された。
本稿では,システム2タスクの代表的タスクであるコード生成に注目し,主な課題を2つ挙げる。
論文 参考訳(メタデータ) (2025-02-18T03:20:50Z) - Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented Generation (RAG) は、外部の現在の知識を大規模言語モデルに組み込むために広く利用されている。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
論文 参考訳(メタデータ) (2025-01-25T14:24:50Z) - Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
マルチモーダル大規模言語モデル(MLLM)に固有の「ハロシン化」問題を緩和する上で,mRAG(Multimodal Retrieval Augmented Generation)が重要な役割を果たしている。
マルチモーダル検索のための自己適応型計画エージェントOmniSearchを提案する。
論文 参考訳(メタデータ) (2024-11-05T09:27:21Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
マルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークであるAOPを提案する。
本研究では, エージェント指向計画の3つの重要な設計原則, 可解性, 完全性, 非冗長性を明らかにする。
大規模実験は,マルチエージェントシステムにおける単一エージェントシステムと既存の計画戦略と比較して,現実の問題を解決する上でのAOPの進歩を実証している。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-24T19:34:04Z) - Questioning the Unknown: Optimising Multi-Agent Collaboration in Narrative-Driven Games [18.383262467079078]
We present Questum, a novel framework for Large Language Model (LLM) based agent in Murder Mystery Games (MMGs)。
MMGには、未定義の状態空間、中間報酬の欠如、継続的な言語領域における戦略的相互作用の必要性など、ユニークな課題がある。
Questumは、エージェント状態のセンサベース表現、情報ゲインによってガイドされる質問ターゲティングメカニズム、そして容疑者リストを洗練し、意思決定効率を高めるためのプルーニング戦略を通じて、これらの複雑さに対処する。
論文 参考訳(メタデータ) (2024-04-26T19:07:30Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。