論文の概要: AnyEnhance: A Unified Generative Model with Prompt-Guidance and Self-Critic for Voice Enhancement
- arxiv url: http://arxiv.org/abs/2501.15417v1
- Date: Sun, 26 Jan 2025 06:40:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:54:29.830246
- Title: AnyEnhance: A Unified Generative Model with Prompt-Guidance and Self-Critic for Voice Enhancement
- Title(参考訳): AnyEnhance: 音声強調のためのPrompt-GuidanceとSelf-Criticを組み合わせた統一生成モデル
- Authors: Junan Zhang, Jing Yang, Zihao Fang, Yuancheng Wang, Zehua Zhang, Zhuo Wang, Fan Fan, Zhizheng Wu,
- Abstract要約: 音声強調のための統合生成モデルであるAnyEnhanceを紹介する。
AnyEnhanceは、音声と歌声の両方を扱うことができる。
ノイズ除去、デバーベーション、デリッピング、超高解像度、ターゲット話者抽出など、幅広い拡張タスクをサポートする。
- 参考スコア(独自算出の注目度): 7.859050538387872
- License:
- Abstract: We introduce AnyEnhance, a unified generative model for voice enhancement that processes both speech and singing voices. Based on a masked generative model, AnyEnhance is capable of handling both speech and singing voices, supporting a wide range of enhancement tasks including denoising, dereverberation, declipping, super-resolution, and target speaker extraction, all simultaneously and without fine-tuning. AnyEnhance introduces a prompt-guidance mechanism for in-context learning, which allows the model to natively accept a reference speaker's timbre. In this way, it could boost enhancement performance when a reference audio is available and enable the target speaker extraction task without altering the underlying architecture. Moreover, we also introduce a self-critic mechanism into the generative process for masked generative models, yielding higher-quality outputs through iterative self-assessment and refinement. Extensive experiments on various enhancement tasks demonstrate AnyEnhance outperforms existing methods in terms of both objective metrics and subjective listening tests. Demo audios are publicly available at https://amphionspace.github.io/anyenhance/.
- Abstract(参考訳): 我々は、音声と歌声の両方を処理する音声強調のための統合生成モデルであるAnyEnhanceを紹介する。
マスク付き生成モデルに基づいて、AnyEnhanceは、音声と歌声の両方を処理でき、デノナイズ、デバーベレーション、デリッピング、超高解像度、ターゲット話者抽出など幅広い拡張タスクをサポートする。
AnyEnhanceは、インコンテキスト学習のためのプロンプトガイダンスメカニズムを導入し、モデルが参照話者の音色をネイティブに受け入れることを可能にする。
このようにして、参照オーディオが利用可能である場合の強化性能を高め、基礎となるアーキテクチャを変更することなく、ターゲット話者抽出タスクを可能にすることができる。
さらに, マスキング生成モデルの生成過程に自己批判機構を導入し, 反復的自己評価と改善を通じて高品質な出力を得る。
様々な拡張タスクに関する大規模な実験は、AnyEnhanceが客観的メトリクスと主観的リスニングテストの両方の観点から、既存のメソッドよりも優れていることを示している。
デモオーディオはhttps://amphionspace.github.io/anyenhance/.comで公開されている。
関連論文リスト
- Non-autoregressive real-time Accent Conversion model with voice cloning [0.0]
我々は音声クローンを用いたリアルタイムアクセント変換のための非自己回帰モデルを開発した。
このモデルは入力L2音声に基づいて最小レイテンシでネイティブなL1音声を生成する。
このモデルは、話者の声の音色、性別、アクセントをリアルタイムで保存し、クローンし、変更することができる。
論文 参考訳(メタデータ) (2024-05-21T19:07:26Z) - Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion
Latent Aligners [69.70590867769408]
ビデオとオーディオのコンテンツ制作は、映画産業とプロのユーザーにとって重要な技術である。
既存の拡散に基づく手法は、ビデオと音声を別々に生成する。
本研究では,このギャップを埋めることを目的として,クロス・ビジュアル・オーディオとジョイント・ヴィジュアル・オーディオ生成のためのフレームワークを慎重に設計した。
論文 参考訳(メタデータ) (2024-02-27T17:57:04Z) - uSee: Unified Speech Enhancement and Editing with Conditional Diffusion
Models [57.71199494492223]
本稿では,条件付き拡散モデルを用いた統一音声強調編集(uSee)モデルを提案する。
実験の結果,提案したuSeeモデルは,他の生成的音声強調モデルと比較して,発声および発声の双方において優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-02T04:36:39Z) - Audio-Visual Speech Enhancement with Score-Based Generative Models [22.559617939136505]
本稿では,スコアベース生成モデルを利用した音声・視覚音声強調システムを提案する。
我々は,リップリーディングを微調整した自己超視的学習モデルから得られる音声-視覚的埋め込みを利用する。
実験により,提案した音声・視覚音声強調システムにより,音声の質が向上することが確認された。
論文 参考訳(メタデータ) (2023-06-02T10:43:42Z) - A Single Self-Supervised Model for Many Speech Modalities Enables
Zero-Shot Modality Transfer [31.028408352051684]
マルチモーダル音声と非モーダル音声の両方を活用できる自己教師型事前学習フレームワークであるu-HuBERTを提案する。
LRS3では1.2%/1.4%/27.2%の音声認識単語誤り率を示す。
論文 参考訳(メタデータ) (2022-07-14T16:21:33Z) - Self supervised learning for robust voice cloning [3.7989740031754806]
自己教師型フレームワークで学習した特徴を用いて,高品質な音声表現を生成する。
学習した特徴は、事前訓練された発話レベルの埋め込みや、非減衰タコトロンアーキテクチャへの入力として使用される。
この手法により、ラベルなしマルチスピーカデータセットでモデルをトレーニングし、未知の話者埋め込みを用いて話者の声を模倣することができる。
論文 参考訳(メタデータ) (2022-04-07T13:05:24Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
ワンショット音声変換は、音声表現のアンタングルメントによって効果的に実現できる。
コンテンツエンコーディングにはベクトル量子化(VQ)を使用し、トレーニング中に相互情報(MI)を相関指標として導入する。
実験結果は,提案手法が効果的に非絡み合った音声表現を学習する際の優位性を反映している。
論文 参考訳(メタデータ) (2021-06-18T13:50:38Z) - High Fidelity Speech Regeneration with Application to Speech Enhancement [96.34618212590301]
本稿では,24khz音声をリアルタイムに生成できる音声のwav-to-wav生成モデルを提案する。
音声変換法に着想を得て,音源の同一性を保ちながら音声特性を増強する訓練を行った。
論文 参考訳(メタデータ) (2021-01-31T10:54:27Z) - Unsupervised Cross-Domain Singing Voice Conversion [105.1021715879586]
任意の同一性から音声変換を行うタスクに対して,wav-to-wav生成モデルを提案する。
提案手法は,自動音声認識のタスクのために訓練された音響モデルとメロディ抽出機能の両方を用いて波形ベースジェネレータを駆動する。
論文 参考訳(メタデータ) (2020-08-06T18:29:11Z) - Speech Enhancement using Self-Adaptation and Multi-Head Self-Attention [70.82604384963679]
本稿では,補助的話者認識機能を用いた音声強調のための自己適応手法について検討する。
テスト発話から直接適応に用いる話者表現を抽出する。
論文 参考訳(メタデータ) (2020-02-14T05:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。