論文の概要: Pfungst and Clever Hans: Identifying the unintended cues in a widely used Alzheimer's disease MRI dataset using explainable deep learning
- arxiv url: http://arxiv.org/abs/2501.15831v2
- Date: Tue, 25 Mar 2025 14:41:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:50:42.301676
- Title: Pfungst and Clever Hans: Identifying the unintended cues in a widely used Alzheimer's disease MRI dataset using explainable deep learning
- Title(参考訳): Pfungst and Clever Hans:説明可能なディープラーニングを用いた広く使われているアルツハイマー病MRIデータセットにおける意図しない手がかりの同定
- Authors: Christian Tinauer, Maximilian Sackl, Rudolf Stollberger, Stefan Ropele, Christian Langkammer,
- Abstract要約: ディープニューラルネットワークはアルツハイマー病(AD)の分類において高い精度を示している
本研究の目的は、ブラックボックスの性質を啓蒙し、T1重み付き(T1w)白質テクスチャの個々の寄与を明らかにすることである。
- 参考スコア(独自算出の注目度): 0.1398098625978622
- License:
- Abstract: Backgrounds. Deep neural networks have demonstrated high accuracy in classifying Alzheimer's disease (AD). This study aims to enlighten the underlying black-box nature and reveal individual contributions of T1-weighted (T1w) gray-white matter texture, volumetric information and preprocessing on classification performance. Methods. We utilized T1w MRI data from the Alzheimer's Disease Neuroimaging Initiative to distinguish matched AD patients (990 MRIs) from healthy controls (990 MRIs). Preprocessing included skull stripping and binarization at varying thresholds to systematically eliminate texture information. A deep neural network was trained on these configurations, and the model performance was compared using McNemar tests with discrete Bonferroni-Holm correction. Layer-wise Relevance Propagation (LRP) and structural similarity metrics between heatmaps were applied to analyze learned features. Results. Classification performance metrics (accuracy, sensitivity, and specificity) were comparable across all configurations, indicating a negligible influence of T1w gray- and white signal texture. Models trained on binarized images demonstrated similar feature performance and relevance distributions, with volumetric features such as atrophy and skull-stripping features emerging as primary contributors. Conclusions. We revealed a previously undiscovered Clever Hans effect in a widely used AD MRI dataset. Deep neural networks classification predominantly rely on volumetric features, while eliminating gray-white matter T1w texture did not decrease the performance. This study clearly demonstrates an overestimation of the importance of gray-white matter contrasts, at least for widely used structural T1w images, and highlights potential misinterpretation of performance metrics.
- Abstract(参考訳): 背景。
ディープニューラルネットワークはアルツハイマー病(AD)の分類において高い精度を示している。
本研究の目的は、ブラックボックスの基礎となる性質を啓蒙し、T1重み付き(T1w)白質テクスチャ、容積情報および前処理による分類性能の個人的貢献を明らかにすることである。
メソッド。
我々はアルツハイマー病脳画像イニシアチブのT1w MRIデータを用いて、一致したAD患者(990MRI)と健常者(990MRI)の鑑別を行った。
前処理には、テクスチャ情報を体系的に除去するために、様々な閾値で頭蓋骨の剥ぎ取りとバイナライゼーションが含まれていた。
これらの構成に基づいて深層ニューラルネットワークをトレーニングし、McNemarテストとBonferroni-Holmの離散補正を用いてモデル性能を比較した。
レイヤワイド・レバレンス・プロパゲーション(LRP)とヒートマップ間の構造的類似度を,学習した特徴の分析に応用した。
結果。
分類性能指標(精度、感度、特異性)は、すべての構成で同等であり、T1wグレーと白信号テクスチャの無視できる影響を示している。
バイナライズされた画像で訓練されたモデルでは、類似した特徴性能と関連性分布が示され、萎縮や頭蓋切断といった容積的特徴が主要因として出現した。
結論。
我々は、広く使われているAD MRIデータセットにおいて、未発見のClever Hans効果を明らかにした。
深層ニューラルネットワークの分類は体積特性に大きく依存するが, 灰白質T1wテクスチャを除去しても性能は低下しなかった。
この研究は、少なくとも広く使われている構造的T1w画像において、白黒物質コントラストの重要性を過大評価し、性能指標の潜在的な誤解釈を強調している。
関連論文リスト
- Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals [4.17085180769512]
アルツハイマー病 (AD) と前頭側頭型認知症 (FTD) は認知症の一般的な形態であり、それぞれ異なる進行パターンを持つ。
本研究は,脳深部領域の時系列信号を解析し,認知症に対する深い学習に基づく分類システムを開発することを目的とする。
論文 参考訳(メタデータ) (2024-08-20T13:11:43Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - White Matter Geometry-Guided Score-Based Diffusion Model for Tissue Microstructure Imputation in Tractography Imaging [8.994860310545532]
白質トラクトグラフィーのパーセレーションは、疾患予測、解剖学的トラクトセグメンテーション、外科的脳マッピング、非画像的表現型分類などの解剖学的特徴を提供する。
WMG-Diffモデル(White Matter Geometry-Guided Diffusion)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-28T10:40:32Z) - Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
アルツハイマー病(Alzheimer's Disease, AD)は、脳の局所的および広範な神経変性を誘導する疾患である。
本研究では、下流ADとCN分類のための特徴抽出器を訓練するための教師なし手法をいくつか評価した。
論文 参考訳(メタデータ) (2024-06-20T11:26:32Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
プルーニングは、ディープニューラルネットワークを圧縮し、全体的なパフォーマンスに大きな影響を及ぼすことなく、メモリ使用量と推論時間を短縮する強力なテクニックとして登場した。
この研究は、プルーニングがモデル行動に与える影響を理解するための第一歩である。
論文 参考訳(メタデータ) (2023-08-17T20:40:30Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - MAF-Net: Multiple attention-guided fusion network for fundus vascular
image segmentation [1.3295074739915493]
網膜基底画像の血管を正確に検出するマルチアテンション誘導核融合ネットワーク(MAF-Net)を提案する。
従来のUNetベースのモデルは、長距離依存を明示的にモデル化するため、部分的な情報を失う可能性がある。
提案手法は,いくつかの最先端手法と比較して良好な結果が得られることを示す。
論文 参考訳(メタデータ) (2023-05-05T15:22:20Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
ホワイトマターパーセレーション(White matter parcellation)は、トラクトグラフィーをクラスタまたは解剖学的に意味のあるトラクトに分類する。
ほとんどのパーセレーション法はディープホワイトマター(DWM)にフォーカスするが、その複雑さのため表面ホワイトマター(SWM)に対処する手法は少ない。
本稿では,2段階の深層学習に基づく新しいフレームワークであるSuperficial White Matter Analysis (SupWMA)を提案する。
論文 参考訳(メタデータ) (2022-07-18T23:07:53Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
既存のCNNモデルはブラックボックスとして機能し、医師が重要な診断機能がモデルによって使用されることを保証しない。
ここでは,マルチタスクと敵の損失を両立させる不確実性に基づく重み付けの組み合わせをエンド・ツー・エンドで学習することにより,病理的特徴に焦点を合わせることを推奨する。
AUC 0.89 (0.01) がベースラインであるAUC 0.86 (0.005) に対して最も高い値を示した。
論文 参考訳(メタデータ) (2020-08-04T12:10:35Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。