Benchmarking Quantum Reinforcement Learning
- URL: http://arxiv.org/abs/2501.15893v1
- Date: Mon, 27 Jan 2025 09:40:18 GMT
- Title: Benchmarking Quantum Reinforcement Learning
- Authors: Nico Meyer, Christian Ufrecht, George Yammine, Georgios Kontes, Christopher Mutschler, Daniel D. Scherer,
- Abstract summary: The emergence of quantum computing and its potential applications in quantum reinforcement learning (QRL) further complicate benchmarking efforts.
We propose a novel benchmarking methodology, which is based on a statistical estimator for sample complexity and a definition of statistical outperformance.
We discuss the potential limitations of these results and explore their implications for empirical research on quantum advantage in QRL.
- Score: 2.5882725323376112
- License:
- Abstract: Benchmarking and establishing proper statistical validation metrics for reinforcement learning (RL) remain ongoing challenges, where no consensus has been established yet. The emergence of quantum computing and its potential applications in quantum reinforcement learning (QRL) further complicate benchmarking efforts. To enable valid performance comparisons and to streamline current research in this area, we propose a novel benchmarking methodology, which is based on a statistical estimator for sample complexity and a definition of statistical outperformance. Furthermore, considering QRL, our methodology casts doubt on some previous claims regarding its superiority. We conducted experiments on a novel benchmarking environment with flexible levels of complexity. While we still identify possible advantages, our findings are more nuanced overall. We discuss the potential limitations of these results and explore their implications for empirical research on quantum advantage in QRL.
Related papers
- Uncertainty quantification for Markov chains with application to temporal difference learning [63.49764856675643]
We develop novel high-dimensional concentration inequalities and Berry-Esseen bounds for vector- and matrix-valued functions of Markov chains.
We analyze the TD learning algorithm, a widely used method for policy evaluation in reinforcement learning.
arXiv Detail & Related papers (2025-02-19T15:33:55Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
We take inspiration from Kearns' SQ oracle and Valiant's weak evaluation oracle.
We introduce an extensive yet intuitive framework that yields unconditional lower bounds for learning from evaluation queries.
arXiv Detail & Related papers (2023-10-26T18:23:21Z) - Learning unitaries with quantum statistical queries [0.0]
We propose several algorithms for learning unitary operators from quantum statistical queries (QSQs)
Our methods hinge on a novel technique for estimating the Fourier mass of a unitary on a subset of Pauli strings with a single quantum statistical query.
We show that quantum statistical queries lead to an exponentially larger sample complexity for certain tasks, compared to separable measurements to the Choi-Jamiolkowski state.
arXiv Detail & Related papers (2023-10-03T17:56:07Z) - Efficient quantum recurrent reinforcement learning via quantum reservoir
computing [3.6881738506505988]
Quantum reinforcement learning (QRL) has emerged as a framework to solve sequential decision-making tasks.
This work presents a novel approach to address this challenge by constructing QRL agents utilizing QRNN-based quantum long short-term memory (QLSTM)
arXiv Detail & Related papers (2023-09-13T22:18:38Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Uncovering Instabilities in Variational-Quantum Deep Q-Networks [0.0]
We show that variational quantum deep Q-networks (VQ-DQN) are subject to instabilities that cause the learned policy to diverge.
We execute RL algorithms on an actual quantum processing unit (an IBM Quantum Device) and investigate differences in behaviour between simulated and physical quantum systems.
arXiv Detail & Related papers (2022-02-10T17:52:44Z) - Convergence Results For Q-Learning With Experience Replay [51.11953997546418]
We provide a convergence rate guarantee, and discuss how it compares to the convergence of Q-learning depending on important parameters such as the frequency and number of iterations of replay.
We also provide theoretical evidence showing when we might expect this to strictly improve performance, by introducing and analyzing a simple class of MDPs.
arXiv Detail & Related papers (2021-12-08T10:22:49Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Cross Learning in Deep Q-Networks [82.20059754270302]
We propose a novel cross Q-learning algorithm, aim at alleviating the well-known overestimation problem in value-based reinforcement learning methods.
Our algorithm builds on double Q-learning, by maintaining a set of parallel models and estimate the Q-value based on a randomly selected network.
arXiv Detail & Related papers (2020-09-29T04:58:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.