論文の概要: Development and Validation of a Dynamic Kidney Failure Prediction Model based on Deep Learning: A Real-World Study with External Validation
- arxiv url: http://arxiv.org/abs/2501.16388v1
- Date: Sat, 25 Jan 2025 13:52:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:40:24.961248
- Title: Development and Validation of a Dynamic Kidney Failure Prediction Model based on Deep Learning: A Real-World Study with External Validation
- Title(参考訳): ディープラーニングに基づく動的キドニー故障予測モデルの開発と検証:外部検証を用いた実世界研究
- Authors: Jingying Ma, Jinwei Wang, Lanlan Lu, Yexiang Sun, Mengling Feng, Peng Shen, Zhiqin Jiang, Shenda Hong, Luxia Zhang,
- Abstract要約: CKD患者に対する深層学習(KFDeep)に基づく腎不全予測モデルを構築した。
実世界のElectronic Health Recordsの一般的な臨床指標に関するすべてのデータをリアルタイムで予測するために使用しています。
KFDeepモデルはシミュレーションされた動的シナリオにおいて安定した性能を示し、AUROCは時間とともに徐々に増加する。
- 参考スコア(独自算出の注目度): 18.421004496350893
- License:
- Abstract: Background: Chronic kidney disease (CKD), a progressive disease with high morbidity and mortality, has become a significant global public health problem. At present, most of the models used for predicting the progression of CKD are static models. We aim to develop a dynamic kidney failure prediction model based on deep learning (KFDeep) for CKD patients, utilizing all available data on common clinical indicators from real-world Electronic Health Records (EHRs) to provide real-time predictions. Findings: A retrospective cohort of 4,587 patients from EHRs of Yinzhou, China, is used as the development dataset (2,752 patients for training, 917 patients for validation) and internal validation dataset (917 patients), while a prospective cohort of 934 patients from the Peking University First Hospital CKD cohort (PKUFH cohort) is used as the external validation dataset. The AUROC of the KFDeep model reaches 0.946 (95\% CI: 0.922-0.970) on the internal validation dataset and 0.805 (95\% CI: 0.763-0.847) on the external validation dataset, both surpassing existing models. The KFDeep model demonstrates stable performance in simulated dynamic scenarios, with the AUROC progressively increasing over time. Both the calibration curve and decision curve analyses confirm that the model is unbiased and safe for practical use, while the SHAP analysis and hidden layer clustering results align with established medical knowledge. Interpretation: The KFDeep model built from real-world EHRs enhances the prediction accuracy of kidney failure without increasing clinical examination costs and can be easily integrated into existing hospital systems, providing physicians with a continuously updated decision-support tool due to its dynamic design.
- Abstract(参考訳): 背景: 死亡率と死亡率の高い進行性疾患である慢性腎臓病(CKD)は, 公衆衛生上の重要な問題となっている。
現在、CKDの進行を予測するために使われているモデルのほとんどは静的モデルである。
本研究の目的は, CKD患者に対する深層学習(KFDeep)に基づく腎不全予測モデルの構築である。
結果: 北京大学第一病院CKDコホート(PKUFHコホート)の934名を対象に, 開発データセット(訓練用2,752名, 検証用917名)と内部検証データセット(検証用917名)を用いて検討した。
KFDeepモデルのAUROCは、内部の検証データセットで0.946 (95\% CI:0.922-0.970)、外部の検証データセットで0.805 (95\% CI: 0.763-0.847)に達する。
KFDeepモデルはシミュレーションされた動的シナリオにおいて安定した性能を示し、AUROCは時間とともに徐々に増加する。
キャリブレーション曲線および決定曲線解析は、モデルが非バイアスで実用上安全なことを確認し、SHAP分析と隠れ層クラスタリングの結果は確立された医療知識と一致している。
解釈: 現実のEHRから構築されたKFDeepモデルは、臨床検査コストを増大させることなく腎臓不全の予測精度を高め、既存の病院システムに容易に統合でき、医師にダイナミックデザインのために継続的に更新された意思決定支援ツールを提供する。
関連論文リスト
- DeLLiriuM: A large language model for delirium prediction in the ICU using structured EHR [1.4699314771635081]
デリリウムは急性の混乱状態であり、集中治療室(ICU)の31%の患者に影響を及ぼすことが示されている。
3大データベースにわたる195病院のICU入院患者104,303名を対象にDeLLiriuMの開発と評価を行った。
論文 参考訳(メタデータ) (2024-10-22T18:56:31Z) - Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
10,326人のCKD患者のデータを利用して,2009年から2018年までの臨床とクレーム情報を組み合わせた。
24ヶ月の観測窓は早期検出と予測精度のバランスをとるのに最適であると同定された。
2021年のeGFR方程式は予測精度を改善し、特にアフリカ系アメリカ人の偏見を低減した。
論文 参考訳(メタデータ) (2024-10-02T03:21:01Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - All Data Inclusive, Deep Learning Models to Predict Critical Events in
the Medical Information Mart for Intensive Care III Database (MIMIC III) [0.0]
本研究は35,348人を対象に42,818人の入院患者を対象に行った。
複数のデータソースにわたる7500万以上のイベントが処理され、3億5500万以上のトークンが処理された。
すべてのデータソースを使用して構築されたモデルから、はるかに信頼性が高く、信頼性の高いホスピタル死亡を予測できる。
論文 参考訳(メタデータ) (2020-09-02T22:12:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。