論文の概要: Development and Validation of a Dynamic Kidney Failure Prediction Model based on Deep Learning: A Real-World Study with External Validation
- arxiv url: http://arxiv.org/abs/2501.16388v2
- Date: Wed, 01 Oct 2025 20:47:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 14:32:17.050454
- Title: Development and Validation of a Dynamic Kidney Failure Prediction Model based on Deep Learning: A Real-World Study with External Validation
- Title(参考訳): ディープラーニングに基づく動的キドニー故障予測モデルの開発と検証:外部検証を用いた実世界研究
- Authors: Jingying Ma, Jinwei Wang, Lanlan Lu, Yexiang Sun, Mengling Feng, Feifei Zhang, Peng Shen, Zhiqin Jiang, Shenda Hong, Luxia Zhang,
- Abstract要約: 慢性腎臓病(CKD)は公衆衛生上重要な問題となっている。
既存のモデルの多くは静的であり、病気の進行の時間的傾向を捉えていない。
我々は,リアルタイム腎不全の予測に,現実の電子健康記録からの一般的な経時的臨床指標を利用するダイナミックモデルを開発した。
- 参考スコア(独自算出の注目度): 30.273170207534637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Chronic kidney disease (CKD), a progressive disease with high morbidity and mortality, has become a significant global public health problem. Most existing models are static and fail to capture temporal trends in disease progression, limiting their ability to inform timely interventions. We address this gap by developing a dynamic model that leverages common longitudinal clinical indicators from real-world Electronic Health Records (EHRs) for real-time kidney failure prediction. Findings: A retrospective cohort of 4,587 patients from Yinzhou, China, was used for model development (2,752 patients for training, 917 patients for validation) and internal validation (918 patients), while external validation was conducted on a prospective PKUFH cohort (934 patients). The model demonstrated competitive performance across datasets, with an AUROC of 0.9311 (95%CI, 0.8873-0.9749) in the internal validation cohort and 0.8141 (95%CI, 0.7728-0.8554) in the external validation cohort, alongside progressively improving dynamic predictions, good calibration, and clinically consistent interpretability. KFDeep has been deployed on an open-access website and in primary care settings. Interpretation: The KFDeep model enables dynamic prediction of kidney failure without increasing clinical examination costs. It has been integrated into existing hospital systems, providing physicians with a continuously updated decision-support tool in routine care.
- Abstract(参考訳): 背景: 死亡率と死亡率の高い進行性疾患である慢性腎臓病(CKD)は, 公衆衛生上の重要な問題となっている。
既存のモデルの多くは静的であり、病気の進行の時間的傾向を捉えず、タイムリーな介入を通知する能力を制限する。
リアルタイム腎不全の予測にEHR(Electronic Health Records)の一般的な経時的臨床指標を利用するダイナミックモデルを開発することにより,このギャップに対処する。
結果: 中国寧州市出身の4,587人を対象に, モデル開発 (訓練用2,752人, 検証用917人) と内部検証 (検証用918人) に, 今後のPKUFHコホート (934人) に外的検証を行った。
このモデルでは、内部検証コホートに0.9311(95%CI, 0.8873-0.9749)、外部検証コホートに0.8141(95%CI, 0.7728-0.8554)、動的予測、良好な校正、臨床的に一貫した解釈性の向上とともに、データセット間での競合性能を示した。
KFDeepはオープンアクセスWebサイトやプライマリケア設定にデプロイされている。
解釈: KFDeep モデルは臨床検査コストを増大させることなく腎不全の動的予測を可能にする。
既存の病院システムに統合されており、医師に定期医療における意思決定支援ツールを継続的に更新している。
関連論文リスト
- Translating Machine Learning Interpretability into Clinical Insights for ICU Mortality Prediction [0.18416014644193068]
我々は2つの機械学習モデルと解釈機構を開発し、厳格に評価した。
有意な欠失(130,810人,5.58% ICU死亡)と欠失(5,661人,23.65% ICU死亡)の2つのデータセットを検討した。
ランダムフォレスト(RF)モデルは、第1のデータセットで0.912のAUROC、第2のデータセットで0.839のAUROC、第1のデータセットで0.924のAUROC、第2のデータセットで0.834のAUROCを示した。
論文 参考訳(メタデータ) (2025-07-30T02:19:06Z) - Early Mortality Prediction in ICU Patients with Hypertensive Kidney Disease Using Interpretable Machine Learning [3.4335475695580127]
集中治療室(ICUs)の高血圧性腎疾患(HKD)患者は短期的死亡率が高い。
我々は,HKDのICU患者に対して,30日間の院内死亡を予測できる機械学習フレームワークを開発した。
論文 参考訳(メタデータ) (2025-07-25T00:48:23Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVDは、英国バイオバンクから50万人以上の参加者を対象に、大規模な言語モデルに基づいて構築された適応可能なCVDリスク予測フレームワークである。
包括的かつ可変的な患者情報を柔軟に取り込み、構造化データと非構造化テキストの両方をシームレスに統合し、最小限の追加データを使用して新規患者の集団に迅速に適応する。
論文 参考訳(メタデータ) (2025-05-30T14:42:02Z) - DeLLiriuM: A large language model for delirium prediction in the ICU using structured EHR [1.4699314771635081]
デリリウムは急性の混乱状態であり、集中治療室(ICU)の31%の患者に影響を及ぼすことが示されている。
3大データベースにわたる195病院のICU入院患者104,303名を対象にDeLLiriuMの開発と評価を行った。
論文 参考訳(メタデータ) (2024-10-22T18:56:31Z) - Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
10,326人のCKD患者のデータを利用して,2009年から2018年までの臨床とクレーム情報を組み合わせた。
24ヶ月の観測窓は早期検出と予測精度のバランスをとるのに最適であると同定された。
2021年のeGFR方程式は予測精度を改善し、特にアフリカ系アメリカ人の偏見を低減した。
論文 参考訳(メタデータ) (2024-10-02T03:21:01Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - All Data Inclusive, Deep Learning Models to Predict Critical Events in
the Medical Information Mart for Intensive Care III Database (MIMIC III) [0.0]
本研究は35,348人を対象に42,818人の入院患者を対象に行った。
複数のデータソースにわたる7500万以上のイベントが処理され、3億5500万以上のトークンが処理された。
すべてのデータソースを使用して構築されたモデルから、はるかに信頼性が高く、信頼性の高いホスピタル死亡を予測できる。
論文 参考訳(メタデータ) (2020-09-02T22:12:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。