論文の概要: Mitigating Omitted Variable Bias in Empirical Software Engineering
- arxiv url: http://arxiv.org/abs/2501.17026v1
- Date: Tue, 28 Jan 2025 15:43:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:42:17.113872
- Title: Mitigating Omitted Variable Bias in Empirical Software Engineering
- Title(参考訳): 経験的ソフトウェア工学におけるオミテッド変数バイアスの緩和
- Authors: Carlo A. Furia, Richard Torkar,
- Abstract要約: 省略変数バイアスは、統計モデルが研究中の影響の関連する決定要因である変数を除外した場合に発生する。
オメットされた可変バイアスは、実証研究の妥当性に重大な脅威をもたらす。
本稿では,ソフトウェア工学における経験的研究を設計・実行するための一連の解析手順を示す。
- 参考スコア(独自算出の注目度): 4.389150156866014
- License:
- Abstract: Omitted variable bias occurs when a statistical model leaves out variables that are relevant determinants of the effects under study. This results in the model attributing the missing variables' effect to some of the included variables -- hence over- or under-estimating the latter's true effect. Omitted variable bias presents a significant threat to the validity of empirical research, particularly in non-experimental studies such as those prevalent in empirical software engineering. This paper illustrates the impact of omitted variable bias on two case studies in the software engineering domain, and uses them to present methods to investigate the possible presence of omitted variable bias, to estimate its impact, and to mitigate its drawbacks. The analysis techniques we present are based on causal structural models of the variables of interest, which provide a practical, intuitive summary of the key relations among variables. This paper demonstrates a sequence of analysis steps that inform the design and execution of any empirical study in software engineering. An important observation is that it pays off to invest effort investigating omitted variable bias before actually executing an empirical study, because this effort can lead to a more solid study design, and to a significant reduction in its threats to validity.
- Abstract(参考訳): ミオットされた変数バイアスは、統計モデルが研究中の影響の関連する決定要因を除外した場合に発生する。
この結果、モデルが欠落した変数の効果を、含まれた変数のいくつかに帰結させ、その結果、後者の真の効果を過大に、あるいは過小評価する。
ミオットされた変数バイアスは、特に経験的ソフトウェア工学で普及しているような実験的でない研究において、経験的研究の有効性に重大な脅威をもたらす。
本稿では,省略変数バイアスがソフトウェア工学領域における2つのケーススタディに与える影響を概説するとともに,省略変数バイアスの存在を調査し,その影響を推定し,その欠点を軽減する方法を提案する。
本稿では,変数の因果構造モデルに基づく解析手法について述べる。
本稿では,ソフトウェア工学における経験的研究を設計・実行するための一連の解析手順を示す。
重要な観察は、実験的な研究を実際に実行する前に、省略された変数バイアスを調査する努力に費やしていることである。
関連論文リスト
- Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
本稿では、デバイアスフェーズを予測ビジネスプロセス分析に組み込むことの課題に対処する。
本研究の枠組みは, 4つのケーススタディで検証し, 予測値に対する偏り変数の寄与を著しく低減することを示した。
論文 参考訳(メタデータ) (2024-10-03T15:56:03Z) - Hypothesizing Missing Causal Variables with LLMs [55.28678224020973]
我々は、入力が欠落変数を持つ部分因果グラフであるような新しいタスクを定式化し、出力は部分グラフを完成させるための欠落変数に関する仮説である。
原因と効果の間の媒介変数を仮説化するLLMの強い能力を示す。
また,オープンソースモデルの一部がGPT-4モデルより優れているという驚くべき結果も得られた。
論文 参考訳(メタデータ) (2024-09-04T10:37:44Z) - Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
因果発見(Causal Discovery)は、構成変数の統計的性質を分析することで、この問題に取り組む手法である。
教師付き学習によって得られたことに基づいて,現在の(おそらく誤解を招く)ベースライン結果に疑問を呈する。
その結果、堅牢な相互情報測定を用いて、教師なしの方法でこの問題にアプローチする。
論文 参考訳(メタデータ) (2024-08-01T09:11:08Z) - Causal Inference with Latent Variables: Recent Advances and Future Prospectives [43.04559575298597]
因果推論(英: Causal inference、CI)は、興味のある変数間の固有の因果関係を推定することを目的としている。
重要な変数の観察の欠如は、CIメソッドの信頼性を著しく損なう。
これらの潜伏変数が不注意に扱われると、様々な結果が生じる。
論文 参考訳(メタデータ) (2024-06-20T03:15:53Z) - A Second Look at the Impact of Passive Voice Requirements on Domain
Modeling: Bayesian Reanalysis of an Experiment [4.649794383775257]
我々は、受動音声がその後のドメイン・モデリング活動に与える影響について、唯一知られている制御実験を再分析する。
その結果, 原作者の観察した影響は, 以前考えられていたよりも遥かに少ないことがわかった。
論文 参考訳(メタデータ) (2024-02-16T16:24:00Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - A Critical Look At The Identifiability of Causal Effects with Deep
Latent Variable Models [2.326384409283334]
ケーススタディとして因果効果変動オートエンコーダ(CEVAE)を用いる。
CEVAEはいくつかの単純なシナリオで確実に機能するように見えるが、不特定な潜在変数や複雑なデータ分布による正しい因果効果は特定できない。
その結果,識別可能性の問題は無視できないことが明らかとなり,今後の作業でさらに注意を払わなければならないと論じた。
論文 参考訳(メタデータ) (2021-02-12T17:43:18Z) - Stable Prediction via Leveraging Seed Variable [73.9770220107874]
従来の機械学習手法は、非因果変数によって誘導されるトレーニングデータにおいて、微妙に刺激的な相関を利用して予測する。
本研究では, 条件付き独立性テストに基づくアルゴリズムを提案し, 種子変数を先行変数とする因果変数を分離し, 安定な予測に採用する。
我々のアルゴリズムは、安定した予測のための最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-06-09T06:56:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。