論文の概要: Growing Neural Networks: Dynamic Evolution through Gradient Descent
- arxiv url: http://arxiv.org/abs/2501.18012v2
- Date: Fri, 25 Jul 2025 20:18:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 14:15:45.349878
- Title: Growing Neural Networks: Dynamic Evolution through Gradient Descent
- Title(参考訳): 成長するニューラルネットワーク: グラディエントDescentによる動的進化
- Authors: Anil Radhakrishnan, John F. Lindner, Scott T. Miller, Sudeshna Sinha, William L. Ditto,
- Abstract要約: トレーニング中に小さなニューラルネットワークを大きなニューラルネットワークに進化させるための2つのアプローチを提案する。
第1の方法は、ネットワークサイズを直接制御する補助重みを使い、第2の方法は、ニューロンの関与を調節するためにコントローラ生成マスクを使用する。
どちらのアプローチも、ネットワークの重みとバイアスを更新するのと同じ勾配差アルゴリズムによって、ネットワークサイズを最適化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contrast to conventional artificial neural networks, which are structurally static, we present two approaches for evolving small networks into larger ones during training. The first method employs an auxiliary weight that directly controls network size, while the second uses a controller-generated mask to modulate neuron participation. Both approaches optimize network size through the same gradient-descent algorithm that updates the network's weights and biases. We evaluate these growing networks on nonlinear regression and classification tasks, where they consistently outperform static networks of equivalent final size. We then explore the hyperparameter space of these networks to find associated scaling relations relative to their static counterparts. Our results suggest that starting small and growing naturally may be preferable to simply starting large, particularly as neural networks continue to grow in size and energy consumption.
- Abstract(参考訳): 構造的に静的な従来のニューラルネットワークとは対照的に、トレーニング中に小さなネットワークを大きなニューラルネットワークに進化させるための2つのアプローチを提案する。
第1の方法は、ネットワークサイズを直接制御する補助重みを使い、第2の方法は、ニューロンの関与を調節するためにコントローラ生成マスクを使用する。
どちらのアプローチも、ネットワークの重みとバイアスを更新するのと同じ勾配差アルゴリズムによって、ネットワークサイズを最適化する。
我々はこれらの成長するネットワークを非線形回帰と分類タスクで評価し、同じ大きさの静的ネットワークを一貫して上回っている。
次に、これらのネットワークのハイパーパラメータ空間を探索し、静的なネットワークに対して関連するスケーリング関係を求める。
我々の結果は、特にニューラルネットワークがサイズとエネルギー消費の増大を続けるにつれて、小さく成長していくことは、単に大きく始めるよりも望ましいことを示唆している。
関連論文リスト
- Peer-to-Peer Learning Dynamics of Wide Neural Networks [10.179711440042123]
我々は,一般的なDGDアルゴリズムを用いて学習した広範ニューラルネットワークの学習力学を,明示的で非漸近的に特徴づける。
我々は,誤りや誤りを正確に予測し,分析結果を検証した。
論文 参考訳(メタデータ) (2024-09-23T17:57:58Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Efficient and Flexible Method for Reducing Moderate-size Deep Neural Networks with Condensation [36.41451383422967]
科学的応用において、ニューラルネットワークのスケールは概して中規模であり、主に推論の速度を保証する。
既存の研究によると、ニューラルネットワークの強力な能力は、主に非線形性に起因する。
本稿では,本手法の有効性を検証するための凝縮低減アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-02T06:53:40Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Self-Expanding Neural Networks [24.812671965904727]
ニューラルネットワークの幅と深さの両方を直感的に拡張する自然な勾配に基づくアプローチを導入する。
我々は、ニューロンが加算されるレート'の上限を証明し、拡張スコアに計算的に安価で低いバウンドを証明した。
分類問題と回帰問題の両方において、完全な接続性と畳み込みを備えた自己拡張ニューラルネットワークの利点について説明する。
論文 参考訳(メタデータ) (2023-07-10T12:49:59Z) - Adaptive Neural Networks Using Residual Fitting [2.546014024559691]
本稿では,ネットワークの残差における説明可能なエラーを探索し,十分なエラーが検出された場合,ネットワークを拡大するネットワーク成長手法を提案する。
これらのタスクの中で、成長するネットワークは、成長しない小さなネットワークよりも優れたパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2023-01-13T19:52:30Z) - A Faster Approach to Spiking Deep Convolutional Neural Networks [0.0]
スパイキングニューラルネットワーク(SNN)は、現在のディープニューラルネットワークよりも脳に近いダイナミクスを持つ。
ネットワークのランタイムと精度を改善するために,従来の作業に基づくネットワーク構造を提案する。
論文 参考訳(メタデータ) (2022-10-31T16:13:15Z) - Meta-Principled Family of Hyperparameter Scaling Strategies [9.89901717499058]
広範かつ深いニューラルネットワークのための動的オブザーバブル(ネットワーク出力、ニューラルタンジェントカーネル、ニューラルタンジェントカーネルの差分)のスケーリングを計算する。
文献で調べた無限幅制限は、相互接続されたウェブの異なる角に対応する。
論文 参考訳(メタデータ) (2022-10-10T18:00:01Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Building Compact and Robust Deep Neural Networks with Toeplitz Matrices [93.05076144491146]
この論文は、コンパクトで、訓練が容易で、信頼性があり、敵の例に対して堅牢なニューラルネットワークを訓練する問題に焦点を当てている。
Toeplitzファミリーの構造化行列の特性を利用して、コンパクトでセキュアなニューラルネットワークを構築する。
論文 参考訳(メタデータ) (2021-09-02T13:58:12Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
firefly neural architecture descentは、ニューラルネットワークを漸進的かつ動的に成長させるための一般的なフレームワークである。
ホタルの降下は、より広く、より深くネットワークを柔軟に成長させ、正確だがリソース効率のよいニューラルアーキテクチャを学習するために応用できることを示す。
特に、サイズは小さいが、最先端の手法で学習したネットワークよりも平均精度が高いネットワークを学習する。
論文 参考訳(メタデータ) (2021-02-17T04:47:18Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - It's Hard for Neural Networks To Learn the Game of Life [4.061135251278187]
最近の研究では、ニューラルネットワークは、ソリューションに迅速に収束する"ロテリチケット"のラッキーな初期重みに依存していることが示唆されている。
本研究では,2次元セル・オートマトン・コンウェイのゲーム・オブ・ライフのn段階を予測するために訓練された小さな畳み込みネットワークについて検討する。
このタスクでトレーニングされたこのアーキテクチャのネットワークは、ほとんど収束しない。
論文 参考訳(メタデータ) (2020-09-03T00:47:08Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z) - Differentiable Sparsification for Deep Neural Networks [0.0]
本稿では,ディープニューラルネットワークのための完全微分可能なスペーシフィケーション手法を提案する。
提案手法は,ネットワークのスパース化構造と重み付けの両方をエンドツーエンドに学習することができる。
私たちの知る限りでは、これが最初の完全に差別化可能なスパーシフィケーション手法である。
論文 参考訳(メタデータ) (2019-10-08T03:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。