論文の概要: Conversation Games and a Strategic View of the Turing Test
- arxiv url: http://arxiv.org/abs/2501.18455v1
- Date: Thu, 30 Jan 2025 16:08:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:14:18.820808
- Title: Conversation Games and a Strategic View of the Turing Test
- Title(参考訳): 会話ゲームとチューリングテストの戦略的展望
- Authors: Kaveh Aryan,
- Abstract要約: 私たちは、評決ゲームと呼ばれるゲームのサブセットに焦点を当てています。
評決ゲームでは、2人のプレーヤーが交互に会話に寄与し、各ステージで非ストラテジックな審査員によって評価される。
シミュレーション実験により提案する概念の実践的妥当性を示し、戦略エージェントが高いマージンでナイーブエージェントより優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Although many game-theoretic models replicate real interactions that often rely on natural language, explicit study of games where language is central to strategic interaction remains limited. This paper introduces the \emph{conversation game}, a multi-stage, extensive-form game based on linguistic strategic interaction. We focus on a subset of the games, called verdict games. In a verdict game, two players alternate to contribute to a conversation, which is evaluated at each stage by a non-strategic judge who may render a conclusive binary verdict, or a decision to continue the dialogue. The game ends once a limit is reached or a verdict is given. We show many familiar processes, such as interrogation or a court process fall under this category. We also, show that the Turing test is an instance of verdict game, and discuss the significance of a strategic view of the Turing test in the age of advanced AI deception. We show the practical relevance of the proposed concepts by simulation experiments, and show that a strategic agent outperforms a naive agent by a high margin.
- Abstract(参考訳): 多くのゲーム理論モデルは、しばしば自然言語に依存する実際の相互作用を再現するが、言語が戦略的相互作用の中心となるゲームの明示的な研究は依然として限られている。
本稿では,言語的戦略的相互作用に基づく多段階多言語ゲームである「emph{conversation game}」を紹介する。
私たちは、評決ゲームと呼ばれるゲームのサブセットに焦点を当てています。
評決ゲームにおいて、2人のプレーヤーが交互に会話に寄与し、これは、決定的な二項判定を下す可能性のある非戦略的判断者、または対話を継続する決定によって各段階で評価される。
ゲームは、限界に達したり、評決が下されたら終了する。
我々は、尋問や裁判所の手続きなど、よく知られた多くのプロセスが、このカテゴリに該当することを示す。
また,チューリングテストが評定ゲームの一例であることを示し,AIの先進的騙しの時代におけるチューリングテストの戦略的視点の重要性を論じる。
シミュレーション実験により提案する概念の実践的妥当性を示し、戦略エージェントが高いマージンでナイーブエージェントより優れていることを示す。
関連論文リスト
- Multi-agent KTO: Reinforcing Strategic Interactions of Large Language Model in Language Game [32.791648070823776]
Werewolfは、言語理解をテストするソーシャル推論ゲームである。
マルチエージェントKahneman & Tversky's Optimization (MaKTO) を開発した。
MaKTOは様々なモデルの平均勝利率を61%達成している。
論文 参考訳(メタデータ) (2025-01-24T04:09:03Z) - Self-Directed Turing Test for Large Language Models [56.64615470513102]
チューリングテストは、自然言語の会話においてAIが人間のような振る舞いを示すことができるかどうかを調べる。
従来のチューリングテストでは、各参加者が1回に1つのメッセージだけを送信する厳格な対話形式を採用している。
本稿では,バーストダイアログ形式を用いた自己指示チューリングテストを提案する。
論文 参考訳(メタデータ) (2024-08-19T09:57:28Z) - Open-Ended Wargames with Large Language Models [3.2228025627337864]
質的なウォーゲームを行うための LLM ベースのマルチエージェントシステムである "Snow Globe" を紹介する。
我々はそのソフトウェアアーキテクチャを概念的に記述し、この出版とともにオープンソース実装をリリースする。
このアプローチの潜在的な応用と、より広範なウォーガーミングエコシステムにどのように適合するかについて論じる。
論文 参考訳(メタデータ) (2024-04-17T14:54:58Z) - Steering Language Models with Game-Theoretic Solvers [43.023261136434876]
大規模言語モデル(LLM)によって生成される自然言語対話の空間上で平衡解法が機能するフレームワークを導入する。
具体的には、対話の「ゲーム」におけるプレイヤー、戦略、ペイオフをモデル化することにより、自然言語の相互作用から従来のゲーム理論の記号論理への結合を生成する。
我々は,会議のスケジューリング,果物の取引,討論など,異なる交渉戦略を必要とする3つの領域に注目し,解決者によって指導されたLLMの言語を評価する。
論文 参考訳(メタデータ) (2024-01-24T22:22:00Z) - Werewolf Among Us: A Multimodal Dataset for Modeling Persuasion
Behaviors in Social Deduction Games [45.55448048482881]
本稿では,説得行動のモデル化のための最初のマルチモーダルデータセットを提案する。
データセットには199の対話文とビデオ,26,647の発話レベルアノテーションの説得戦略,ゲームレベルアノテーションの推論ゲーム結果が含まれている。
論文 参考訳(メタデータ) (2022-12-16T04:52:53Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
自然言語の文脈におけるインタラクティブなシミュレーションであるテキストベースゲームの強化学習について検討する。
エージェントの動作が解釈可能な推論手順によって生成され、支援されるように、意思決定のための知識グラフを用いた明示的な推論を行うことを目指している。
提案手法を多数の人為的ベンチマークゲームで広範囲に評価し,本手法が既存のテキストベースエージェントよりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2020-10-22T12:40:22Z) - Interactive Fiction Game Playing as Multi-Paragraph Reading
Comprehension with Reinforcement Learning [94.50608198582636]
対話型フィクション(IF)ゲームと実際の自然言語テキストは、言語理解技術に対する新たな自然な評価を提供する。
IFゲーム解決の新たな視点を捉え,MPRC(Multi-Passage Reading)タスクとして再フォーマットする。
論文 参考訳(メタデータ) (2020-10-05T23:09:20Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
学習者が最初にプレーするゲームと、選択した行動に反応する相手との連続的なゲームについて考察する。
対戦相手の対戦相手列と対戦する際,学習者に対して新しいアルゴリズムを提案する。
我々の結果には、相手の反応の正則性に依存するアルゴリズムの後悔の保証が含まれている。
論文 参考訳(メタデータ) (2020-07-10T09:33:05Z) - Predicting Strategic Behavior from Free Text [38.506665373140876]
我々は,ゲームとしてモデル化された経済状況下でのメッセージと行動の関連性について検討する。
本研究では,個人が提供した自由テキストに基づくワンショットゲームにおいて,個人の行動予測に関する研究を紹介する。
これらの属性に基づいたワンショットゲームにおいて,これらの個人が行う行動を予測するために,トランスダクティブ・ラーニング(transductive learning)を採用している。
論文 参考訳(メタデータ) (2020-04-06T20:05:30Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
ゲームプレイを通じて,ゲームの記述を明示せず,託宣のみにアクセス可能な,重要で一般的なゲーム解決環境について検討する。
限られたデュレーション学習フェーズにおいて、アルゴリズムは両方のプレイヤーのアクションを制御し、ゲームを学習し、それをうまくプレイする方法を学習する。
私たちのモチベーションは、クエリされた戦略プロファイルの支払いを評価するのにコストがかかる状況において、利用可能性の低い戦略を迅速に学習することにあります。
論文 参考訳(メタデータ) (2020-02-24T20:30:38Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
本研究は,テキストベースのコンピュータゲームにおいて,最先端の性能を発揮できる探索・模倣学習型エージェントを提案する。
テキストベースのコンピュータゲームは、自然言語でプレイヤーの世界を記述し、プレイヤーがテキストを使ってゲームと対話することを期待する。
これらのゲームは、言語理解、問題解決、および人工エージェントによる言語生成のためのテストベッドと見なすことができるため、興味がある。
論文 参考訳(メタデータ) (2020-01-24T03:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。