論文の概要: Deformable Beta Splatting
- arxiv url: http://arxiv.org/abs/2501.18630v1
- Date: Mon, 27 Jan 2025 18:58:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:00:55.970480
- Title: Deformable Beta Splatting
- Title(参考訳): 変形可能なベータスプレイティング
- Authors: Rong Liu, Dylan Sun, Meida Chen, Yue Wang, Andrew Feng,
- Abstract要約: 3D Gaussian Splatting (3DGS) はリアルタイムレンダリングにより高度な放射場再構成を行う。
変形可能ベータスプレイティング(DBS)は,形状と色表現を両立させる,変形可能かつコンパクトなアプローチである。
- 参考スコア(独自算出の注目度): 4.855751031707892
- License:
- Abstract: 3D Gaussian Splatting (3DGS) has advanced radiance field reconstruction by enabling real-time rendering. However, its reliance on Gaussian kernels for geometry and low-order Spherical Harmonics (SH) for color encoding limits its ability to capture complex geometries and diverse colors. We introduce Deformable Beta Splatting (DBS), a deformable and compact approach that enhances both geometry and color representation. DBS replaces Gaussian kernels with deformable Beta Kernels, which offer bounded support and adaptive frequency control to capture fine geometric details with higher fidelity while achieving better memory efficiency. In addition, we extended the Beta Kernel to color encoding, which facilitates improved representation of diffuse and specular components, yielding superior results compared to SH-based methods. Furthermore, Unlike prior densification techniques that depend on Gaussian properties, we mathematically prove that adjusting regularized opacity alone ensures distribution-preserved Markov chain Monte Carlo (MCMC), independent of the splatting kernel type. Experimental results demonstrate that DBS achieves state-of-the-art visual quality while utilizing only 45% of the parameters and rendering 1.5x faster than 3DGS-based methods. Notably, for the first time, splatting-based methods outperform state-of-the-art Neural Radiance Fields, highlighting the superior performance and efficiency of DBS for real-time radiance field rendering.
- Abstract(参考訳): 3D Gaussian Splatting (3DGS) はリアルタイムレンダリングにより高度な放射場再構成を行う。
しかし、幾何学におけるガウス核と色符号化のための低次球高調波(SH)に依存しているため、複雑な幾何学や多彩な色を捉える能力は制限されている。
変形可能ベータ・スプレイティング(DBS)は、幾何学と色表現の両面を強化する変形可能かつコンパクトなアプローチである。
DBSはガウスのカーネルを変形可能なベータカーネルに置き換え、バウンダリサポートと適応周波数制御を提供し、より忠実な形状の細部をキャプチャし、メモリ効率を向上した。
また,カラーエンコーディングにより拡散成分と特異成分の表現が向上し,SH法よりも優れた結果が得られた。
さらに、ガウスの性質に依存する以前の密度化手法とは異なり、正規化不透明度を調整するだけで、スプレイティングカーネルタイプに依存しない分布保存型マルコフ連鎖モンテカルロ(MCMC)が保証されることを数学的に証明する。
実験の結果,DBSはパラメータの45%しか利用せず,3DGS法よりも1.5倍高速であることがわかった。
特に、スプラッティングに基づく手法は、最先端のニューラルレージアンス場よりも優れており、リアルタイムレージアンス場レンダリングにおけるDBSの優れた性能と効率性を強調している。
関連論文リスト
- Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
GUS-IRは、粗く光沢のある表面を特徴とする複雑なシーンの逆レンダリング問題に対処するために設計された新しいフレームワークである。
本稿では、逆レンダリング、フォワードシェーディング、遅延シェーディングに広く使われている2つの顕著なシェーディング技術を分析し、比較することから始める。
両手法の利点を組み合わせた統合シェーディングソリューションを提案する。
論文 参考訳(メタデータ) (2024-11-12T01:51:05Z) - Structure Consistent Gaussian Splatting with Matching Prior for Few-shot Novel View Synthesis [28.3325478008559]
SCGaussian, structure Consistent Gaussian Splatting method using matching priors to learn 3D consistent scene structure。
シーン構造を2つの折り畳みで最適化する: 幾何学の描画とより重要なのは、ガウス原始体の位置である。
前方, 周囲, 複雑な大規模シーンにおける実験により, 最先端性能と高効率性によるアプローチの有効性が示された。
論文 参考訳(メタデータ) (2024-11-06T03:28:06Z) - RayGauss: Volumetric Gaussian-Based Ray Casting for Photorealistic Novel View Synthesis [3.4341938551046227]
微分レンダリング法は、新しいビュー合成に大きな進歩をもたらした。
不規則分布ガウスの異なる光線鋳造のための放射放射率cと密度シグマを一貫した定式化を行う。
適切なトレーニング時間を維持しつつ、Blenderデータセット上で25FPSの推論速度を達成しながら、最先端のレンダリングよりも優れた品質を実現する。
論文 参考訳(メタデータ) (2024-08-06T10:59:58Z) - Textured-GS: Gaussian Splatting with Spatially Defined Color and Opacity [7.861993966048637]
Spherical Harmonics (SH) を用いたガウス平滑化手法である Textured-GS を導入する。
このアプローチにより、各ガウス多様体は、その表面の様々な色や不透明度を調節することで、よりリッチな表現を表現できる。
実験の結果,Textured-GS はベースラインのMini-Splatting と標準の3DGS を視覚的忠実度で一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2024-07-13T00:45:37Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
論文 参考訳(メタデータ) (2024-06-03T15:56:58Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields [54.482261428543985]
ニューラル・ラジアンス・フィールドを使用する手法は、新しいビュー合成のような従来のタスクに汎用的である。
3次元ガウシアンスプラッティングは, 実時間ラディアンス場レンダリングにおける最先端の性能を示した。
この問題を効果的に回避するために,アーキテクチャとトレーニングの変更を提案する。
論文 参考訳(メタデータ) (2023-12-06T00:46:30Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。