論文の概要: Combining physics-based and data-driven models: advancing the frontiers of research with Scientific Machine Learning
- arxiv url: http://arxiv.org/abs/2501.18708v1
- Date: Thu, 30 Jan 2025 19:09:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 22:46:12.824534
- Title: Combining physics-based and data-driven models: advancing the frontiers of research with Scientific Machine Learning
- Title(参考訳): 物理に基づくモデルとデータ駆動モデルを組み合わせる:科学機械学習による研究のフロンティアを前進させる
- Authors: Alfio Quarteroni, Paola Gervasio, Francesco Regazzoni,
- Abstract要約: 機械学習は物理に基づくモデルとデータ駆動モデルを組み合わせる。
SciMLを使えば、物理と数学的知識を機械学習アルゴリズムに注入できる。
我々は、偏微分方程式によって支配される複雑な問題を解くために、多種多様なSciML戦略の大きな可能性について論じる。
- 参考スコア(独自算出の注目度): 3.912796219404492
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scientific Machine Learning (SciML) is a recently emerged research field which combines physics-based and data-driven models for the numerical approximation of differential problems. Physics-based models rely on the physical understanding of the problem at hand, subsequent mathematical formulation, and numerical approximation. Data-driven models instead aim to extract relations between input and output data without arguing any causality principle underlining the available data distribution. In recent years, data-driven models have been rapidly developed and popularized. Such a diffusion has been triggered by a huge availability of data (the so-called big data), an increasingly cheap computing power, and the development of powerful machine learning algorithms. SciML leverages the physical awareness of physics-based models and, at the same time, the efficiency of data-driven algorithms. With SciML, we can inject physics and mathematical knowledge into machine learning algorithms. Yet, we can rely on data-driven algorithms' capability to discover complex and non-linear patterns from data and improve the descriptive capacity of physics-based models. After recalling the mathematical foundations of digital modelling and machine learning algorithms, and presenting the most popular machine learning architectures, we discuss the great potential of a broad variety of SciML strategies in solving complex problems governed by partial differential equations. Finally, we illustrate the successful application of SciML to the simulation of the human cardiac function, a field of significant socio-economic importance that poses numerous challenges on both the mathematical and computational fronts. The corresponding mathematical model is a complex system of non-linear ordinary and partial differential equations describing the electromechanics, valve dynamics, blood circulation, perfusion in the coronary tree, and torso potential. Despite the robustness and accuracy of physics-based models, certain aspects, such as unveiling constitutive laws for cardiac cells and myocardial material properties, as well as devising efficient reduced order models to dominate the extraordinary computational complexity, have been successfully tackled by leveraging data-driven models.
- Abstract(参考訳): 科学機械学習(SciML)は、微分問題の数値近似のための物理モデルとデータ駆動モデルを組み合わせた、最近登場した研究分野である。
物理学に基づくモデルは、目の前の問題の物理的理解、その後の数学的定式化、数値近似に依存している。
データ駆動モデルは、利用可能なデータ分布を下記の因果原理を議論することなく、入力データと出力データの関係を抽出することを目的としている。
近年,データ駆動モデルの開発や普及が急速に進んでいる。
このような拡散は、データ(いわゆるビッグデータ)の膨大な可用性、ますます安価なコンピューティングパワー、強力な機械学習アルゴリズムの開発によって引き起こされている。
SciMLは物理ベースのモデルの物理的認識を活用し、同時にデータ駆動アルゴリズムの効率も向上する。
SciMLを使えば、物理と数学的知識を機械学習アルゴリズムに注入できる。
しかし、我々はデータ駆動アルゴリズムの能力を利用して、データから複雑で非線形なパターンを発見し、物理ベースのモデルの記述能力を向上させることができる。
ディジタルモデリングと機械学習アルゴリズムの数学的基礎を振り返り、最も人気のある機械学習アーキテクチャを提示した後、偏微分方程式によって支配される複雑な問題を解くための様々なSciML戦略の大きな可能性について論じる。
最後に,SciMLのヒト心機能のシミュレーションへの応用について述べる。
対応する数学的モデルは、非線型常微分方程式と偏微分方程式の複雑な系であり、電気力学、弁動力学、血液循環、冠木での灌流、および胴体電位を記述する。
物理モデルによるロバスト性や精度にもかかわらず、心臓細胞や心筋物質特性の構成法則の公表や、異常な計算複雑性を支配下に置く効率的な縮小順序モデルを考案するなど、ある種の側面は、データ駆動モデルを活用することでうまく取り組まれている。
関連論文リスト
- Machine learning for modelling unstructured grid data in computational physics: a review [37.19820094095164]
非構造化グリッドデータは計算物理学における複雑な幾何学や力学のモデル化に不可欠である。
このレビューは、非構造化グリッドデータに機械学習アプローチを適用しようとする計算科学者のためのガイドブックとして意図されている。
MLメソッドが従来の数値技術の本質的な制限を克服する方法について、特に焦点を当てている。
非構造化データを用いた生成モデルやメッシュ生成のための強化学習,ハイブリッド物理データ駆動パラダイムなど,新たな方向性について論じる。
論文 参考訳(メタデータ) (2025-02-13T14:11:33Z) - Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics [5.5371760658918]
ディープラーニング技術と物理駆動設計の統合は、私たちが逆問題に対処する方法を変えつつある。
この視点は、物理駆動学習法の進歩と可能性を強調している。
MLと物理の融合により、より効率的で信頼性の高い問題解決戦略がもたらされることが示されている。
論文 参考訳(メタデータ) (2025-01-09T21:14:25Z) - Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning [0.0]
現在の水理モデリング手法は、データ駆動機械学習アルゴリズムと従来の物理モデルを組み合わせたものである。
結果予測におけるMLの精度にもかかわらず、科学的知識の統合は信頼性の高い予測には不可欠である。
本研究では,概念的水文モデルのプロセス理解とMLアルゴリズムの予測効率を融合した物理インフォームド機械学習モデルを提案する。
論文 参考訳(メタデータ) (2024-02-21T16:26:59Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - MINN: Learning the dynamics of differential-algebraic equations and application to battery modeling [2.1303885995425635]
モデル統合ニューラルネットワーク(MINN)と呼ばれる新しい機械学習アーキテクチャを提案する。
MINNは偏微分代数方程式(PDAE)からなる一般自律系または非自律系の物理に基づくダイナミクスを学ぶ
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Enhancing predictive skills in physically-consistent way: Physics
Informed Machine Learning for Hydrological Processes [1.0635248457021496]
本研究では,概念的水文モデルのプロセス理解と最先端MLモデルの予測能力を組み合わせた物理インフォームド機械学習(PIML)モデルを開発する。
提案したモデルを用いて,インドのナルマダ川流域における目標(流れ流)と中間変数(実際の蒸発吸引)の月次時間系列を予測する。
論文 参考訳(メタデータ) (2021-04-22T12:13:42Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
本稿では,大理石を円形迷路の中心まで航行する作業について述べる。
実システムと対話する数分以内に,複雑な環境で大理石を動かすことを学習するモデルを提案する。
論文 参考訳(メタデータ) (2020-11-14T02:03:08Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。