論文の概要: Ethical Concerns of Generative AI and Mitigation Strategies: A Systematic Mapping Study
- arxiv url: http://arxiv.org/abs/2502.00015v1
- Date: Wed, 08 Jan 2025 13:05:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-09 06:16:06.093751
- Title: Ethical Concerns of Generative AI and Mitigation Strategies: A Systematic Mapping Study
- Title(参考訳): 生成AIと緩和戦略の倫理的懸念--システムマッピングによる研究
- Authors: Yutan Huang, Chetan Arora, Wen Cheng Houng, Tanjila Kanij, Anuradha Madulgalla, John Grundy,
- Abstract要約: 本稿では,大規模言語モデルの使用に関する重要な倫理的問題を特定し,分類することを目的とする。
既存の緩和戦略を検証し、これらの戦略を様々な領域で実施する上での卓越した課題を評価する。
- 参考スコア(独自算出の注目度): 7.694895971261275
- License:
- Abstract: [Context] Generative AI technologies, particularly Large Language Models (LLMs), have transformed numerous domains by enhancing convenience and efficiency in information retrieval, content generation, and decision-making processes. However, deploying LLMs also presents diverse ethical challenges, and their mitigation strategies remain complex and domain-dependent. [Objective] This paper aims to identify and categorize the key ethical concerns associated with using LLMs, examine existing mitigation strategies, and assess the outstanding challenges in implementing these strategies across various domains. [Method] We conducted a systematic mapping study, reviewing 39 studies that discuss ethical concerns and mitigation strategies related to LLMs. We analyzed these ethical concerns using five ethical dimensions that we extracted based on various existing guidelines, frameworks, and an analysis of the mitigation strategies and implementation challenges. [Results] Our findings reveal that ethical concerns in LLMs are multi-dimensional and context-dependent. While proposed mitigation strategies address some of these concerns, significant challenges still remain. [Conclusion] Our results highlight that ethical issues often hinder the practical implementation of the mitigation strategies, particularly in high-stake areas like healthcare and public governance; existing frameworks often lack adaptability, failing to accommodate evolving societal expectations and diverse contexts.
- Abstract(参考訳): [文脈]生成AI技術、特にLarge Language Models(LLMs)は、情報検索、コンテンツ生成、意思決定プロセスにおける利便性と効率を高めることで、多くの領域を変革した。
しかし、LSMの展開は様々な倫理的課題をもたらし、その緩和戦略は複雑でドメインに依存している。
[目的]本論文は,LLMの活用に伴う重要な倫理的問題を特定し,分類し,既存の緩和戦略を検証し,これらの戦略を様々な領域に展開する上での課題を評価することを目的とする。
方法〕LLMに関する倫理的懸念と緩和戦略を議論する39の研究を整理し,系統地図調査を行った。
我々は、これらの倫理的懸念を、既存のガイドライン、枠組み、緩和戦略および実施課題の分析に基づいて抽出した5つの倫理的側面を用いて分析した。
結果]LLMの倫理的懸念は多次元的・文脈に依存していることが明らかとなった。
提案された緩和戦略はこれらの懸念のいくつかに対処するが、依然として大きな課題が残っている。
[結論]倫理的問題は、特に医療や公共統治などの高度の分野において、緩和戦略の実践的な実施を妨げることが多く、既存のフレームワークは適応性に欠けており、社会的な期待や多様な状況に対応できないことが強調されている。
関連論文リスト
- EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning [69.55982246413046]
戦略的推論のための明示的なポリシー最適化(EPO)を提案する。
EPOはオープンなアクション空間で戦略を提供し、任意のLLMエージェントにプラグインすることで、ゴール指向の振る舞いを動機付けることができる。
社会的および物理的領域にわたる実験は、EPOの長期的なゴールアライメント能力を示す。
論文 参考訳(メタデータ) (2025-02-18T03:15:55Z) - A Survey on Vulnerability Prioritization: Taxonomy, Metrics, and Research Challenges [20.407534993667607]
リソース制約は効果的な脆弱性優先順位付け戦略を必要とする。
本稿では,メトリクスを重大度,悪用性,文脈要因,予測指標,集約手法に分類する新しい分類法を提案する。
論文 参考訳(メタデータ) (2025-02-16T10:33:37Z) - Risks, Causes, and Mitigations of Widespread Deployments of Large Language Models (LLMs): A Survey [0.0]
大規模言語モデル(LLM)は、テキスト生成、要約、分類において優れた能力を持つ自然言語処理(NLP)を変革した。
彼らの普及は、学術的完全性、著作権、環境への影響、データバイアス、公正性、プライバシといった倫理的考察など、多くの課題をもたらす。
本稿は、Google Scholarから体系的に収集・合成されたこれらの主題に関する文献に関する総合的な調査である。
論文 参考訳(メタデータ) (2024-08-01T21:21:18Z) - Navigating LLM Ethics: Advancements, Challenges, and Future Directions [5.023563968303034]
本研究では,人工知能分野におけるLarge Language Models(LLM)を取り巻く倫理的問題に対処する。
LLMと他のAIシステムによってもたらされる共通の倫理的課題を探求する。
幻覚、検証可能な説明責任、検閲の複雑さの復号化といった課題を強調している。
論文 参考訳(メタデータ) (2024-05-14T15:03:05Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Risk-reducing design and operations toolkit: 90 strategies for managing
risk and uncertainty in decision problems [65.268245109828]
本稿では,このような戦略のカタログを開発し,それらのためのフレームワークを開発する。
高い不確実性のために難解であるように見える決定問題に対して、効率的な応答を提供する、と論じている。
次に、多目的最適化を用いた決定理論にそれらを組み込む枠組みを提案する。
論文 参考訳(メタデータ) (2023-09-06T16:14:32Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
不確実性は意思決定とリスク管理において広範囲にわたる課題である。
本稿では,このような戦略を体系的に理解し,その適用範囲を判断し,それらをうまく活用するための枠組みを開発する。
論文 参考訳(メタデータ) (2023-01-18T19:16:23Z) - Achieving a Data-driven Risk Assessment Methodology for Ethical AI [3.523208537466128]
我々は,AIを用いた組織が直面する倫理的・社会的リスクの実践的定義の基盤として,多分野の研究アプローチが重要であることを示す。
本稿では,DRESS-eAIという新たなリスク評価手法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:55:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。