Entropic costs of the quantum-to-classical transition in a microscopic clock
- URL: http://arxiv.org/abs/2502.00096v1
- Date: Fri, 31 Jan 2025 19:00:00 GMT
- Title: Entropic costs of the quantum-to-classical transition in a microscopic clock
- Authors: Vivek Wadhia, Florian Meier, Federico Fedele, Ralph Silva, Nuriya Nurgalieva, David L. Craig, Daniel Jirovec, Jaime Saez-Mollejo, Andrea Ballabio, Daniel Chrastina, Giovanni Isella, Marcus Huber, Mark T. Mitchison, Paul Erker, Natalia Ares,
- Abstract summary: We experimentally realize a quantum clock by using a charge sensor to count charges tunneling through a double quantum dot (DQD)
Our results suggest that the entropy produced by the amplification and measurement of a clock's ticks is the most important and fundamental thermodynamic cost of timekeeping at the quantum scale.
- Score: 0.165654691701786
- License:
- Abstract: We experimentally realize a quantum clock by using a charge sensor to count charges tunneling through a double quantum dot (DQD). Individual tunneling events are used as the clock's ticks. We quantify the clock's precision while measuring the power dissipated by the DQD and, separately, the charge sensor in both direct-current and radio-frequency readout modes. This allows us to probe the thermodynamic cost of creating ticks microscopically and recording them macroscopically, which we refer to as the quantum-to-classical transition. Our experiment is the first to explore the interplay between the entropy produced by a microscopic clockwork and its macroscopic measurement apparatus. We show that the latter contribution not only dwarfs the former but also unlocks greatly increased precision, because the measurement record can be exploited to optimally estimate time even when the DQD is at equilibrium. Our results suggest that the entropy produced by the amplification and measurement of a clock's ticks, which has often been ignored in the literature, is the most important and fundamental thermodynamic cost of timekeeping at the quantum scale.
Related papers
- Using coherent feedback for a periodic clock [14.1128902075348]
We introduce a novel, fully quantum clock using a driven oscillator in the quantum regime and coherent quantum feedback.
We experimentally implement the model using two superconducting cavities with incorporated Josephson junctions and microwave circulators.
Under specific conditions of noisy driving, we observe that the clock oscillations are more coherent than the drive, pointing towards the implementation of a quantum autonomous clock.
arXiv Detail & Related papers (2024-10-30T11:34:14Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Autonomous quantum clocks using athermal resources [0.0]
We show that quantum measurement engineered reservoirs can be used as athermal resources to drive the ticks of a quantum clock.
Two and three level quantum systems act as transducers in our model, converting the quantum measurement induced noise to produce a series of ticks.
arXiv Detail & Related papers (2022-07-16T11:49:38Z) - Universality-of-clock-rates test using atom interferometry with $T^{3}$
scaling [63.08516384181491]
Atomic clocks generate delocalized quantum clocks.
Tests of universality of clock rates (one facet of LPI) to atom interferometry generating delocalized quantum clocks proposed.
Results extend our notion of time, detached from classical and localized philosophies.
arXiv Detail & Related papers (2022-04-05T12:26:56Z) - A quantum network of entangled optical atomic clocks [0.0]
We demonstrate the first quantum network of entangled optical clocks using two $88$Sr$+$ ions separated by a macroscopic distance (2 m)
We find that entanglement reduces the measurement uncertainty by a factor close to $sqrt2$, as predicted for the Heisenberg limit.
arXiv Detail & Related papers (2021-11-19T17:34:48Z) - Quantum clocks driven by measurement [0.0]
We describe a quantum clock driven by entropy reduction through measurement.
The mechanism consists of a superconducting transmon qubit coupled to an open co-planar resonator.
We show that the measurement itself induces coherent oscillations, with fluctuating period, in the conditional moments.
arXiv Detail & Related papers (2021-09-12T00:03:02Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Measuring the thermodynamic cost of timekeeping [0.0]
In some form or another, all clocks use the evolution of nature towards higher entropy states to quantify the passage of time.
We show theoretically that the maximum possible accuracy for this classical clock is proportional to the entropy created per tick.
We find that there is a linear relation between accuracy and entropy and that the clock operates within an order of magnitude of the theoretical bound.
arXiv Detail & Related papers (2020-06-15T18:17:44Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.