論文の概要: Sub-Sequential Physics-Informed Learning with State Space Model
- arxiv url: http://arxiv.org/abs/2502.00318v1
- Date: Sat, 01 Feb 2025 04:55:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:52:30.738467
- Title: Sub-Sequential Physics-Informed Learning with State Space Model
- Title(参考訳): 状態空間モデルを用いたサブシーケンス物理インフォームドラーニング
- Authors: Chenhui Xu, Dancheng Liu, Yuting Hu, Jiajie Li, Ruiyang Qin, Qingxiao Zheng, Jinjun Xiong,
- Abstract要約: PINNMambaは、サブシーケンスモデリングをSSMで導入する新しいフレームワークである。
PINNMambaは最先端アーキテクチャと比較してエラーを最大86.3%削減できることを示す。
- 参考スコア(独自算出の注目度): 18.572243888935574
- License:
- Abstract: Physics-Informed Neural Networks (PINNs) are a kind of deep-learning-based numerical solvers for partial differential equations (PDEs). Existing PINNs often suffer from failure modes of being unable to propagate patterns of initial conditions. We discover that these failure modes are caused by the simplicity bias of neural networks and the mismatch between PDE's continuity and PINN's discrete sampling. We reveal that the State Space Model (SSM) can be a continuous-discrete articulation allowing initial condition propagation, and that simplicity bias can be eliminated by aligning a sequence of moderate granularity. Accordingly, we propose PINNMamba, a novel framework that introduces sub-sequence modeling with SSM. Experimental results show that PINNMamba can reduce errors by up to 86.3\% compared with state-of-the-art architecture. Our code is available at https://github.com/miniHuiHui/PINNMamba.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(英: Physics-Informed Neural Networks、PINN)は、偏微分方程式(PDE)のディープラーニングに基づく数値解法の一種である。
既存のPINNは、初期状態のパターンを伝播できないような障害モードに悩まされることが多い。
これらの障害モードは、ニューラルネットワークの単純さバイアスと、PDEの連続性とPINNの離散サンプリングのミスマッチに起因する。
我々は、状態空間モデル(SSM)が、初期状態の伝播を可能にする連続的な離散的調音でありうることを明らかにし、適度な粒度の配列を整列することで、単純さのバイアスを排除できることを明らかにした。
そこで我々は,SSMを用いたサブシーケンスモデリングを導入した新しいフレームワークであるPINNMambaを提案する。
実験の結果、PINNMambaは最先端アーキテクチャと比較してエラーを最大86.3倍削減できることがわかった。
私たちのコードはhttps://github.com/miniHuiHui/PINNMamba.comから入手可能です。
関連論文リスト
- ProPINN: Demystifying Propagation Failures in Physics-Informed Neural Networks [71.02216400133858]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法において高い期待を得た
以前の研究では、PINNの伝播不良現象が観察された。
本論文は,伝播不良とその根本原因について,初めて公式かつ詳細な研究を行ったものである。
論文 参考訳(メタデータ) (2025-02-02T13:56:38Z) - Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions [0.1874930567916036]
AI for Science」は、AI技術を用いた基本的な科学的問題を解決することを目的としている。
本研究では、トレーニング対象のモデルを単にニューラルネットワークから非線形変換に変更する可能性について検討する。
これにより、損失関数の項数は標準のPINN損失よりも減少する。
論文 参考訳(メタデータ) (2024-07-30T11:19:48Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
最近提案された物理インフォームドニューラルネットワーク(PINN)は、幅広い偏微分方程式(PDE)を解くことに成功している。
本稿では、波動方程式の代わりにPINNを用いて周波数領域における音響および粘性音響散乱波動方程式を解き、震源の摂動を除去する。
PMLと2次ニューロンは、その効果と減衰を改善できることを示し、この改善の理由を議論する。
論文 参考訳(メタデータ) (2022-08-16T13:29:01Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Learning in Sinusoidal Spaces with Physics-Informed Neural Networks [22.47355575565345]
物理インフォームドニューラルネットワーク(PINN)は、物理増強された損失関数を用いて、その出力が基本的な物理法則と一致していることを保証する。
実際に多くの問題に対して正確なPINNモデルをトレーニングすることは困難であることが判明した。
論文 参考訳(メタデータ) (2021-09-20T07:42:41Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。