論文の概要: MAP Image Recovery with Guarantees using Locally Convex Multi-Scale Energy (LC-MUSE) Model
- arxiv url: http://arxiv.org/abs/2502.03302v1
- Date: Wed, 05 Feb 2025 16:00:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:27:53.859547
- Title: MAP Image Recovery with Guarantees using Locally Convex Multi-Scale Energy (LC-MUSE) Model
- Title(参考訳): 局所凸型マルチスケールエネルギー(LC-MUSE)モデルを用いた保証者によるMAP画像の復元
- Authors: Jyothi Rikhab Chand, Mathews Jacob,
- Abstract要約: データ多様体の周囲の局所的に強く凸したマルチスケールの深部エネルギーモデルを提案する。
画像に基づく逆問題では学習エネルギーモデルを使用し、定式化はいくつかの望ましい性質を提供する。
並列磁気共鳴(MR)画像再構成の文脈において,提案手法は最先端の凸正則化器よりも優れた性能を示すことを示す。
- 参考スコア(独自算出の注目度): 12.218356507147583
- License:
- Abstract: We propose a multi-scale deep energy model that is strongly convex in the local neighbourhood around the data manifold to represent its probability density, with application in inverse problems. In particular, we represent the negative log-prior as a multi-scale energy model parameterized by a Convolutional Neural Network (CNN). We restrict the gradient of the CNN to be locally monotone, which constrains the model as a Locally Convex Multi-Scale Energy (LC-MuSE). We use the learned energy model in image-based inverse problems, where the formulation offers several desirable properties: i) uniqueness of the solution, ii) convergence guarantees to a minimum of the inverse problem, and iii) robustness to input perturbations. In the context of parallel Magnetic Resonance (MR) image reconstruction, we show that the proposed method performs better than the state-of-the-art convex regularizers, while the performance is comparable to plug-and-play regularizers and end-to-end trained methods.
- Abstract(参考訳): 本稿では,その確率密度を表すために,データ多様体周辺の局所的に強く凸した多スケール深部エネルギーモデルを提案し,逆問題に適用する。
特に,畳み込みニューラルネットワーク(CNN)によりパラメータ化されたマルチスケールエネルギーモデルとして,負の対数プライヤを表現している。
我々はCNNの勾配を局所単調に制限し、局所凸多スケールエネルギー(LC-MuSE)としてモデルを制約する。
我々は、画像に基づく逆問題において学習エネルギーモデルを使用し、定式化はいくつかの望ましい特性を提供する。
i) 解の特異性
二 逆問題最小限の収束を保証すること。
三 摂動の入力に対する堅牢性
並列磁気共鳴(MR)画像再構成では,提案手法は最先端の凸正則化器よりも優れた性能を示し,その性能はプラグ・アンド・プレイ正則化器やエンド・ツー・エンドの訓練手法に匹敵することを示した。
関連論文リスト
- Iteratively Refined Image Reconstruction with Learned Attentive Regularizers [14.93489065234423]
本稿では,ディープラーニングの力を活用した画像再構成のための正規化手法を提案する。
これは一連の凸問題の最小化に対応するためである。
解釈可能性、理論的保証、信頼性、パフォーマンスの両立を約束するバランスを提供します。
論文 参考訳(メタデータ) (2024-07-09T07:22:48Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems [8.33626757808923]
本稿では,新しいデータ駆動型パラダイムであるConvex Latent-d Adrial Regularizers (CLEAR)を紹介する。
CLEARは、ディープラーニング(DL)と変分正規化の融合を表す。
本手法は従来型のデータ駆動手法と従来型の正規化手法を一貫して上回っている。
論文 参考訳(メタデータ) (2023-09-17T12:06:04Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - An Active Contour Model with Local Variance Force Term and Its Efficient
Minimization Solver for Multi-phase Image Segmentation [2.935661780430872]
多相画像分割問題に適用可能な局所分散力(LVF)項を持つ能動輪郭モデルを提案する。
LVFでは,ノイズのある画像のセグメンテーションに非常に効果的である。
論文 参考訳(メタデータ) (2022-03-17T02:32:30Z) - Sampling Approximately Low-Rank Ising Models: MCMC meets Variational
Methods [35.24886589614034]
一般相互作用が$J$である超キューブ上の二次定値イジングモデルを考える。
我々の一般的な結果は、低ランクのIsingモデルに対する最初のサンプリングアルゴリズムを示唆している。
論文 参考訳(メタデータ) (2022-02-17T21:43:50Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Learned convex regularizers for inverse problems [3.294199808987679]
本稿では,逆問題に対する正規化器として,データ適応型入力ニューラルネットワーク(ICNN)を学習することを提案する。
パラメータ空間における単調な誤差を反復で減少させる部分次アルゴリズムの存在を実証する。
提案した凸正則化器は, 逆問題に対する最先端のデータ駆動技術に対して, 少なくとも競争力があり, 時には優位であることを示す。
論文 参考訳(メタデータ) (2020-08-06T18:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。