論文の概要: Machine learning-guided construction of an analytic kinetic energy functional for orbital free density functional theory
- arxiv url: http://arxiv.org/abs/2502.05411v1
- Date: Sat, 08 Feb 2025 02:28:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:31:04.653984
- Title: Machine learning-guided construction of an analytic kinetic energy functional for orbital free density functional theory
- Title(参考訳): 軌道自由密度汎関数理論のための解析的エネルギー汎関数の機械学習誘導構成
- Authors: Sergei Manzhos, Johann Luder, Manabu Ihara,
- Abstract要約: 数百の材料の結晶セル平均運動エネルギー密度(タウ)の機械学習によって導かれる運動エネルギー密度表現(タウ)の解析式を構築した。
特徴量に対するタウの機能的依存のタイプを理解するために,ハイブリッドガウスプロセス回帰-ニューラルネットワーク(GPR-NN)法が用いられた。
コーンシャム DFT エネルギー体積曲線を十分な精度で再現できる解析モデルを構築した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning (ML) of kinetic energy functionals (KEF) for orbital-free density functional theory (OF-DFT) holds the promise of addressing an important bottleneck in large-scale ab initio materials modeling where sufficiently accurate analytic KEFs are lacking. However, ML models are not as easily handled as analytic expressions; they need to be provided in the form of algorithms and associated data. Here, we bridge the two approaches and construct an analytic expression for a KEF guided by interpretative machine learning of crystal cell-averaged kinetic energy densities ({\tau}) of several hundred materials. A previously published dataset including multiple phases of 433 unary, binary, and ternary compounds containing Li, Al, Mg, Si, As, Ga, Sb, Na, Sn, P, and In was used for training, including data at the equilibrium geometry as well as strained structures. A hybrid Gaussian process regression - neural network (GPR-NN) method was used to understand the type of functional dependence of {\tau} on the features which contained cell-averaged terms of the 4th order gradient expansion and the product of the electron density and Kohn-Sham effective potential. Based on this analysis, an analytic model is constructed that can reproduce Kohn-Sham DFT energy-volume curves with sufficient accuracy (pronounced minima that are sufficiently close to the minima of the Kohn-Sham DFT-based curves and with sufficiently close curvatures) to enable structure optimizations and elastic response calculations.
- Abstract(参考訳): 軌道自由密度汎関数理論(OF-DFT)のための運動エネルギー汎関数(KEF)の機械学習(ML)は、十分に正確な解析的KEFが欠如している大規模材料モデリングにおいて重要なボトルネックに取り組むことを約束している。
しかし、MLモデルは解析式ほど簡単には扱えない。
ここでは, 結晶セル平均運動エネルギー密度({\tau})の解釈的機械学習によって導かれるKEFの解析式を構築した。
Li,Al,Mg,Si,As,Ga,Sb,Na,Sn,P,Inを含む433個の一元性化合物,二元性化合物,三元性化合物の多相を含むデータセットを,平衡幾何学におけるデータやひずみ構造を含むトレーニングに使用した。
ガウス過程回帰-ニューラルネットワーク (GPR-NN) 法を用いて, 4次勾配展開のセル平均値と電子密度およびコーンシャム効果ポテンシャルの積を含む特徴量に対する, {\tau} の機能的依存のタイプを解明した。
この分析に基づいて、コーン・シャム DFT のエネルギー体積曲線を十分な精度で再現できる解析モデル(コーン・シャム DFT の DFT 曲線のミニマに十分近い最小値)を構築し、構造最適化と弾性応答計算を可能にする。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - NeuralSCF: Neural network self-consistent fields for density functional theory [1.7667864049272723]
コーンシャム密度汎関数理論(KS-DFT)は、正確な電子構造計算に広く応用されている。
深層学習の目的としてコーン・シャム密度マップを確立するニューラルネットワーク自己整合体(NeuralSCF)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-22T15:24:08Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
金標準CCSD(T)計算をトレーニングデータとして,有機分子の電子構造を統一した機械学習手法を開発した。
炭化水素分子を用いたモデルでは, 計算コストと様々な量子化学特性の予測精度において, 広範に用いられているハイブリッド関数と二重ハイブリッド関数でDFTより優れていた。
論文 参考訳(メタデータ) (2024-05-09T19:51:27Z) - KineticNet: Deep learning a transferable kinetic energy functional for
orbital-free density functional theory [13.437597619451568]
KineticNetは、分子二次格子上の量の予測に適応した点畳み込みに基づく、同変のディープニューラルネットワークアーキテクチャである。
初めて、学習された関数の化学的精度は、小さな分子の入力密度とジオメトリーによって達成される。
論文 参考訳(メタデータ) (2023-05-08T17:43:31Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
コーンシャム密度汎関数論(KS-DFT)を解くための深層学習手法を提案する。
このような手法はSCF法と同じ表現性を持つが,計算複雑性は低下する。
さらに,本手法により,より複雑なニューラルベース波動関数の探索が可能となった。
論文 参考訳(メタデータ) (2023-03-01T10:38:10Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Learning the exchange-correlation functional from nature with fully
differentiable density functional theory [0.0]
我々は、完全に微分可能な3次元コーン・シャム密度汎関数論フレームワーク内での交換相関関数を置き換えるためにニューラルネットワークを訓練する。
我々の訓練された交換相関ネットワークは110分子の集合体における原子化とイオン化エネルギーの予測を改善した。
論文 参考訳(メタデータ) (2021-02-08T14:25:10Z) - DeepDFT: Neural Message Passing Network for Accurate Charge Density
Prediction [0.0]
DeepDFTは原子周辺の電子電荷密度を予測するためのディープラーニングモデルである。
モデルの精度とスケーラビリティは、分子、固体、液体に対して実証される。
論文 参考訳(メタデータ) (2020-11-04T16:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。