論文の概要: Content-Driven Local Response: Supporting Sentence-Level and Message-Level Mobile Email Replies With and Without AI
- arxiv url: http://arxiv.org/abs/2502.06430v1
- Date: Mon, 10 Feb 2025 13:06:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:31:02.397677
- Title: Content-Driven Local Response: Supporting Sentence-Level and Message-Level Mobile Email Replies With and Without AI
- Title(参考訳): コンテンツ駆動型ローカルレスポンス:AIなしでの文レベルとメッセージレベルモバイルメール応答をサポート
- Authors: Tim Zindulka, Sven Goller, Florian Lehmann, Daniel Buschek,
- Abstract要約: マイクロタスキングにインスパイアされたCDLR(Content-Driven Local Response)と呼ばれる新しいUI概念を開発した。
これにより、ユーザーは文章を選択してメールに返信を挿入できる。
- 参考スコア(独自算出の注目度): 29.130766472908793
- License:
- Abstract: Mobile emailing demands efficiency in diverse situations, which motivates the use of AI. However, generated text does not always reflect how people want to respond. This challenges users with AI involvement tradeoffs not yet considered in email UIs. We address this with a new UI concept called Content-Driven Local Response (CDLR), inspired by microtasking. This allows users to insert responses into the email by selecting sentences, which additionally serves to guide AI suggestions. The concept supports combining AI for local suggestions and message-level improvements. Our user study (N=126) compared CDLR with manual typing and full reply generation. We found that CDLR supports flexible workflows with varying degrees of AI involvement, while retaining the benefits of reduced typing and errors. This work contributes a new approach to integrating AI capabilities: By redesigning the UI for workflows with and without AI, we can empower users to dynamically adjust AI involvement.
- Abstract(参考訳): モバイルメールはさまざまな状況において効率性を必要とし、AIの使用を動機付けている。
しかし、生成されたテキストは、人々がどう反応したいのかを常に反映しているわけではない。
これは、EメールUIでまだ考慮されていない、AI関与のトレードオフを持つユーザを悩ませるものだ。
マイクロタスキングにインスパイアされたCDLR(Content-Driven Local Response)と呼ばれる新しいUIコンセプトでこの問題に対処する。
これにより、ユーザーは文章を選択してメールに返信を挿入できる。
このコンセプトは、ローカルな提案とメッセージレベルの改善のためのAIの組み合わせをサポートする。
ユーザスタディ(N=126)はCDLRと手動タイピングと全応答生成を比較した。
私たちは、CDLRがAIの関与度が異なる柔軟なワークフローをサポートしながら、タイピングとエラーの削減のメリットを保っていることを発見した。
ワークフロー用のUIを再設計することで、AIの関与を動的に調整することが可能になる。
関連論文リスト
- Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization [56.674356045200696]
本稿では,複雑なメモシステムや事前の高品質な実演データを必要としない,複数のタスクに対する知識とスキルを取り入れたAIエージェントの訓練手法を提案する。
このアプローチでは,エージェントが新たな経験を収集し,ヒントの形で人間から補正フィードバックを受け取り,このフィードバックを重みに組み込む,反復的なプロセスを採用している。
Llama-3 をベースとしたエージェントに実装することで,提案手法の有効性を実証し,数ラウンドのフィードバックの後,高度なモデル GPT-4o と DeepSeek-V3 をタスクセットで向上させる。
論文 参考訳(メタデータ) (2025-02-03T17:45:46Z) - From Voice to Value: Leveraging AI to Enhance Spoken Online Reviews on the Go [21.811104609265158]
音声入力によるレビューを提供するモバイルアプリケーションであるVocalizerを開発した。
調査の結果,AIエージェントを頻繁に利用し,レビューに詳細な情報を加えることができた。
また、インタラクティブなAI機能によって、ユーザーの自己効力感やレビューをオンラインで共有する意欲が向上することを示す。
論文 参考訳(メタデータ) (2024-12-06T21:59:47Z) - Survey of User Interface Design and Interaction Techniques in Generative AI Applications [79.55963742878684]
我々は,デザイナやディベロッパの参照として使用できる,さまざまなユーザインタラクションパターンのコンペレーションを作ることを目指している。
また、生成AIアプリケーションの設計についてもっと学ぼうとする人たちの参入障壁を低くしようと努力しています。
論文 参考訳(メタデータ) (2024-10-28T23:10:06Z) - Enhancing AI Assisted Writing with One-Shot Implicit Negative Feedback [6.175028561101999]
Niftyは、テキスト生成プロセスに暗黙のフィードバックを制御的に統合するために、分類器のガイダンスを使用するアプローチである。
また,ルージュ-Lでは最大で34%,正しい意図の生成では89%,人間評価では86%の勝利率を示した。
論文 参考訳(メタデータ) (2024-10-14T18:50:28Z) - The Future of AI-Assisted Writing [0.0]
我々は、情報検索レンズ(プル・アンド・プッシュ)を用いて、そのようなツールの比較ユーザスタディを行う。
我々の研究結果によると、ユーザーは執筆におけるAIのシームレスな支援を歓迎している。
ユーザはAI支援の書き込みツールとのコラボレーションも楽しんだが、オーナシップの欠如を感じなかった。
論文 参考訳(メタデータ) (2023-06-29T02:46:45Z) - HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging
Face [85.25054021362232]
大規模言語モデル(LLM)は、言語理解、生成、相互作用、推論において例外的な能力を示した。
LLMは、複雑なAIタスクを解決するために既存のAIモデルを管理するコントローラとして機能する可能性がある。
本稿では,機械学習コミュニティのさまざまなAIモデルを接続するLLMエージェントであるHuggingGPTを紹介する。
論文 参考訳(メタデータ) (2023-03-30T17:48:28Z) - Collaboration with Conversational AI Assistants for UX Evaluation:
Questions and How to Ask them (Voice vs. Text) [18.884080068561843]
We performed a Wizard-of-Oz design probe study with 20 participants who interacted simulated AI assistants via text or voice。
参加者は、ユーザアクション、ユーザメンタルモデル、AIアシスタントからのヘルプ、製品とタスク情報、ユーザ人口統計の5つのカテゴリについて質問した。
テキストアシスタントの効率は著しく向上したが,満足度と信頼度は同等であった。
論文 参考訳(メタデータ) (2023-03-07T03:59:14Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Suggestion Lists vs. Continuous Generation: Interaction Design for
Writing with Generative Models on Mobile Devices Affect Text Length, Wording
and Perceived Authorship [27.853155569154705]
モバイル端末上でAIで書き込むための2つのユーザインタフェースを提示し、イニシアティブとコントロールのレベルを制御する。
AIの提案では、人々は積極的に書くことは少なかったが、著者であると感じた。
どちらの設計においても、AIはテキストの長さを長くし、言葉に影響を与えていると認識された。
論文 参考訳(メタデータ) (2022-08-01T13:57:11Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z) - IART: Intent-aware Response Ranking with Transformers in
Information-seeking Conversation Systems [80.0781718687327]
我々は、情報探索会話におけるユーザ意図パターンを分析し、意図認識型ニューラルレスポンスランキングモデル「IART」を提案する。
IARTは、ユーザ意図モデリングと言語表現学習とTransformerアーキテクチャの統合の上に構築されている。
論文 参考訳(メタデータ) (2020-02-03T05:59:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。