論文の概要: Application of Artificial Intelligence (AI) in Civil Engineering
- arxiv url: http://arxiv.org/abs/2502.06727v1
- Date: Mon, 10 Feb 2025 17:55:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:32:29.845000
- Title: Application of Artificial Intelligence (AI) in Civil Engineering
- Title(参考訳): 土木工学における人工知能(AI)の応用
- Authors: Temitope Funmilayo Awolusi, Bernard Chukwuemeka Finbarrs-Ezema, Isaac Munachimdinamma Chukwudulue, Marc Azab,
- Abstract要約: 本稿では,土木工学の欠点を解決するために,ソフトコンピューティング手法と人工知能を探求する必要性について検討する。
人工知能(ANN)、ファジィ論理、遺伝的アルゴリズム(GA)、確率推論を含む高度な計算モデルの統合は、土木工学の領域に革命をもたらした。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Hard computing generally deals with precise data, which provides ideal solutions to problems. However, in the civil engineering field, amongst other disciplines, that is not always the case as real-world systems are continuously changing. Here lies the need to explore soft computing methods and artificial intelligence to solve civil engineering shortcomings. The integration of advanced computational models, including Artificial Neural Networks (ANNs), Fuzzy Logic, Genetic Algorithms (GAs), and Probabilistic Reasoning, has revolutionized the domain of civil engineering. These models have significantly advanced diverse sub-fields by offering innovative solutions and improved analysis capabilities. Sub-fields such as: slope stability analysis, bearing capacity, water quality and treatment, transportation systems, air quality, structural materials, etc. ANNs predict non-linearities and provide accurate estimates. Fuzzy logic uses an efficient decision-making process to provide a more precise assessment of systems. Lastly, while GAs optimizes models (based on evolutionary processes) for better outcomes, probabilistic reasoning lowers their statistical uncertainties.
- Abstract(参考訳): ハードコンピューティングは通常、問題に対する理想的な解決策を提供する正確なデータを扱う。
しかし、土木工学の分野では、他の分野の中でも、現実世界のシステムが継続的に変化しているため、必ずしもそうではない。
ここでは、土木工学の欠点を解決するために、ソフトコンピューティングの手法と人工知能を探求する必要がある。
人工知能(ANN)、ファジィ論理、遺伝的アルゴリズム(GA)、確率推論を含む高度な計算モデルの統合は、土木工学の領域に革命をもたらした。
これらのモデルは、革新的なソリューションと分析機能の改善を提供することにより、多様なサブフィールドを著しく進化させた。
斜面安定性解析、受動能力、水質・処理、輸送システム、空気質、構造材料など。
ANNは非線形性を予測し、正確な推定を提供する。
ファジィ論理は、より正確なシステム評価を提供するために効率的な意思決定プロセスを使用する。
最後に、GAはより良い結果を得るためにモデル(進化過程に基づく)を最適化するが、確率論的推論は統計的不確実性を低下させる。
関連論文リスト
- Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
本研究では、回帰問題に対する入力データの非形式的特徴をフィルタリングする特徴属性法の可能性について検討する。
我々は、初期データ空間から最適な変数セットを選択するために、統合グラディエントとk平均クラスタリングを組み合わせた機能選択パイプラインを導入する。
提案手法の有効性を検証するため, ターボ機械の開発過程における羽根振動解析を実世界の産業問題に適用した。
論文 参考訳(メタデータ) (2024-09-25T09:50:51Z) - Stochastic Online Optimization for Cyber-Physical and Robotic Systems [9.392372266209103]
本稿では,サイバー物理・ロボットシステムの文脈におけるプログラミング問題の解決のための新しいオンラインフレームワークを提案する。
我々の問題定式化制約は、一般に連続状態とアクション空間が非線形であるサイバー物理システムの進化をモデル化する。
我々は, 力学の粗い推定でも, アルゴリズムの収束性を大幅に向上させることができることを示した。
論文 参考訳(メタデータ) (2024-04-08T09:08:59Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Physics Informed Piecewise Linear Neural Networks for Process
Optimization [0.0]
ニューラルネットワークモデルに埋め込まれた最適化問題に対して,物理情報を用いた線形ニューラルネットワークモデルの更新が提案されている。
すべてのケースにおいて、物理インフォームドトレーニングニューラルネットワークに基づく最適結果は、大域的最適性に近い。
論文 参考訳(メタデータ) (2023-02-02T10:14:54Z) - Smoothed Online Learning for Prediction in Piecewise Affine Systems [43.64498536409903]
本稿では,最近開発されたスムーズなオンライン学習フレームワークに基づく。
これは、断片的なアフィン系における予測とシミュレーションのための最初のアルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-01-26T15:54:14Z) - Exploring the Nuances of Designing (with/for) Artificial Intelligence [0.0]
我々は,AIの設計において,アルゴリズムと社会の問題に同時に対処する手段として,インフラストラクチャの構築について検討する。
アルゴリズム的なソリューションも、純粋にヒューマニズム的なソリューションも、AIの狭い状態において完全に望ましくない結果をもたらすには十分ではない。
論文 参考訳(メタデータ) (2020-10-22T20:34:35Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。