論文の概要: Improved generalization with deep neural operators for engineering systems: Path towards digital twin
- arxiv url: http://arxiv.org/abs/2301.06701v3
- Date: Mon, 29 Apr 2024 02:33:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 03:37:12.879816
- Title: Improved generalization with deep neural operators for engineering systems: Path towards digital twin
- Title(参考訳): エンジニアリングシステムのためのディープニューラル演算子による一般化の改善:デジタルツインへの道
- Authors: Kazuma Kobayashi, James Daniell, Syed Bahauddin Alam,
- Abstract要約: 我々は,ブランチ/トランクアーキテクチャを用いた Onets 実装である Deep Operator Networks (DeepONets) の性能評価を行った。
DeepONets は解演算子を正確に学習することができ、ODE および拡散問題に対して 0.96 以上の予測精度のスコアを得ることができる。
さらに、目に見えないシナリオ(ゼロショットの特徴)で評価すると、訓練されたモデルは優れた一般化能力を示す。
- 参考スコア(独自算出の注目度): 0.4551615447454769
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Operator Networks (ONets) represent a novel advancement in machine learning algorithms, offering a robust and generalizable alternative for approximating partial differential equations (PDEs) solutions. Unlike traditional Neural Networks (NN), which directly approximate functions, ONets specialize in approximating mathematical operators, enhancing their efficacy in addressing complex PDEs. In this work, we evaluate the capabilities of Deep Operator Networks (DeepONets), an ONets implementation using a branch/trunk architecture. Three test cases are studied: a system of ODEs, a general diffusion system, and the convection/diffusion Burgers equation. It is demonstrated that DeepONets can accurately learn the solution operators, achieving prediction accuracy scores above 0.96 for the ODE and diffusion problems over the observed domain while achieving zero shot (without retraining) capability. More importantly, when evaluated on unseen scenarios (zero shot feature), the trained models exhibit excellent generalization ability. This underscores ONets vital niche for surrogate modeling and digital twin development across physical systems. While convection-diffusion poses a greater challenge, the results confirm the promise of ONets and motivate further enhancements to the DeepONet algorithm. This work represents an important step towards unlocking the potential of digital twins through robust and generalizable surrogates.
- Abstract(参考訳): ニューラル演算子ネットワーク(ONets)は、偏微分方程式(PDE)を近似する堅牢で一般化可能な代替手段を提供する機械学習アルゴリズムの新しい進歩を表している。
関数を直接近似する従来のニューラルネットワーク(NN)とは異なり、オネットは数学演算子の近似を専門とし、複雑なPDEに対処する上での有効性を高める。
本研究では,ブランチ/トランクアーキテクチャを用いたOnets実装であるDeep Operator Networks(DeepONets)の性能評価を行う。
ODEの系、一般拡散系、対流/拡散バーガーズ方程式の3つのテストケースが研究されている。
DeepONets は解演算子を正確に学習し、ODE に対して 0.96 以上の予測精度のスコアと観測領域上の拡散問題を達成するとともに、ゼロショット(再学習なしで)能力を達成する。
さらに、目に見えないシナリオ(ゼロショットの特徴)で評価すると、訓練されたモデルは優れた一般化能力を示す。
これは、サロゲートモデリングと物理的システム間のデジタル双対開発にとって、ONetsが重要なニッチであることを示している。
対流拡散はより大きな課題をもたらすが、結果は Onets の約束を確認し、DeepONet アルゴリズムのさらなる拡張を動機付けている。
この研究は、堅牢で一般化可能なサロゲートを通じて、デジタル双生児の可能性を解き放つための重要なステップである。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - Operator Learning: Algorithms and Analysis [8.305111048568737]
オペレータ学習(Operator learning)は、機械学習から、関数のバナッハ空間間の近似演算子へのアイデアの適用を指す。
このレビューは、有限次元ユークリッド空間上で定義される関数の近似におけるディープニューラルネットワークの成功に基づいて構築されたニューラル演算子に焦点を当てる。
論文 参考訳(メタデータ) (2024-02-24T04:40:27Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Convolutional Neural Operators for robust and accurate learning of PDEs [11.562748612983956]
本稿では、入力や出力として関数を処理する畳み込みニューラルネットワークの新しい適応法を提案する。
結果として生じるアーキテクチャは、畳み込みニューラル演算子(CNO)と呼ばれる。
普遍性定理を証明し、CNOが PDE で生じる作用素を所望の精度で近似できることを示す。
論文 参考訳(メタデータ) (2023-02-02T15:54:45Z) - Reliable extrapolation of deep neural operators informed by physics or
sparse observations [2.887258133992338]
ディープニューラルネットワークは、ディープニューラルネットワークを介して無限次元関数空間間の非線形マッピングを学習することができる。
DeepONetsは科学と工学の新しいシミュレーションパラダイムを提供する。
本稿では,外挿下での安全な予測を保証する5つの信頼性学習手法を提案する。
論文 参考訳(メタデータ) (2022-12-13T03:02:46Z) - Enhanced DeepONet for Modeling Partial Differential Operators
Considering Multiple Input Functions [5.819397109258169]
偏微分方程式(PDE)に対する一般非線形連続作用素をモデル化するディープネットワーク演算子(DeepONet)が提案された。
既存のDeepONetは1つの入力関数しか受け付けないため、アプリケーションに制限がある。
本稿では、2つの入力関数を2つの分枝サブネットワークで表現する拡張DeepONetまたはEDeepONet高レベルニューラルネットワーク構造を提案する。
2つの偏微分方程式の例をモデル化した結果、提案した拡張DeepONetは約7X-17Xであり、完全に連結されたニューラルネットワークよりも約1桁精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-02-17T23:58:23Z) - Multigoal-oriented dual-weighted-residual error estimation using deep
neural networks [0.0]
ディープラーニングは、関数を近似する柔軟性の高い強力なツールだと考えられている。
提案手法は,誤差の局所化に付随する問題を解く後続誤差推定法に基づく。
複数のゴール関数に対する後方誤差推定を得るために,効率的で実装が容易なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-12-21T16:59:44Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。