論文の概要: Riemannian Proximal Sampler for High-accuracy Sampling on Manifolds
- arxiv url: http://arxiv.org/abs/2502.07265v1
- Date: Tue, 11 Feb 2025 05:08:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:55.645415
- Title: Riemannian Proximal Sampler for High-accuracy Sampling on Manifolds
- Title(参考訳): 多様体上の高精度サンプリングのためのリーマン近距離サンプリング器
- Authors: Yunrui Guan, Krishnakumar Balasubramanian, Shiqian Ma,
- Abstract要約: このサンプリング器の性能は、2つの鍵オラクルに依存している。
我々は、$varepsilon$-accuracyでサンプルを生成するには、Kullback-Leiblerの発散に$O(log(1/varepsilon)$イテレーションが必要であることを示す。
提案手法の有効性を示す予備的な数値結果を提供する。
- 参考スコア(独自算出の注目度): 17.676198590190598
- License:
- Abstract: We introduce the Riemannian Proximal Sampler, a method for sampling from densities defined on Riemannian manifolds. The performance of this sampler critically depends on two key oracles: the Manifold Brownian Increments (MBI) oracle and the Riemannian Heat-kernel (RHK) oracle. We establish high-accuracy sampling guarantees for the Riemannian Proximal Sampler, showing that generating samples with $\varepsilon$-accuracy requires $O(\log(1/\varepsilon))$ iterations in Kullback-Leibler divergence assuming access to exact oracles and $O(\log^2(1/\varepsilon))$ iterations in the total variation metric assuming access to sufficiently accurate inexact oracles. Furthermore, we present practical implementations of these oracles by leveraging heat-kernel truncation and Varadhan's asymptotics. In the latter case, we interpret the Riemannian Proximal Sampler as a discretization of the entropy-regularized Riemannian Proximal Point Method on the associated Wasserstein space. We provide preliminary numerical results that illustrate the effectiveness of the proposed methodology.
- Abstract(参考訳): リーマン多様体上で定義される密度からサンプリングする方法であるリーマン近距離増幅器を導入する。
このサンプリング器の性能は、マニフォールド・ブラウン・インクリメント(MBI)とリーマン・ヒートカーネル(RHK)の2つの重要なオラクルに依存している。
我々は、リーマン・プロクティマル・サンプラーの高精度サンプリング保証を確立し、$\varepsilon$-accuracyでサンプルを生成するには$O(\log(1/\varepsilon)$ iterations in Kullback-Leibler divergence assuming access to exact oracles and $O(\log^2(1/\varepsilon)$ iterations in the total variation metric assuming available enough accurate inexact oracles。
さらに,熱カーネル切断とバラダンの漸近を利用して,これらのオークスを実践的に実装する。
後者の場合、我々はリーマン近距離増幅器を、関連するワッサーシュタイン空間上のエントロピー正則化リーマン近点法(英語版)(entropy-regularized Riemannian proximal Point Method)の離散化として解釈する。
提案手法の有効性を示す予備的な数値結果を提供する。
関連論文リスト
- Flow Perturbation to Accelerate Unbiased Sampling of Boltzmann distribution [2.103187931015573]
フローベース生成モデルはボルツマン分布のサンプリングに用いられているが、その応用は流れのジャコビアンを得る計算コストによって妨げられている。
本稿では,最適化された摂動を流れに組み込む流れ摂動法を提案する。
摂動流によって生じる軌跡を再重み付けすることにより,ボルツマン分布の非バイアスサンプリングを桁違いの速度アップで達成する。
論文 参考訳(メタデータ) (2024-07-15T12:29:17Z) - Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
非log-concave分布からのサンプリングのための近位サンプリング器 (SPS) について検討した。
対象分布への収束性は,アルゴリズムの軌道が有界である限り保証可能であることを示す。
我々は、Langevin dynamics(SGLD)とLangevin-MALAの2つの実装可能な変種を提供し、SPS-SGLDとSPS-MALAを生み出した。
論文 参考訳(メタデータ) (2024-05-27T00:53:18Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
我々は,本質的なガウス過程が実際により優れた性能を発揮することを示す。
我々の研究は、データ効率の異なるレベルを区別するために、よりきめ細かい分析が必要であることを示している。
論文 参考訳(メタデータ) (2023-09-19T20:30:58Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Convergence of the Riemannian Langevin Algorithm [10.279748604797911]
計量$g$の多様体上の自然測度に関して、密度$nu$の分布からサンプリングする問題を研究する。
対数障壁によって定義されるポリトープに制限された等尺的密度をサンプリングする手法が,本手法の特例である。
論文 参考訳(メタデータ) (2022-04-22T16:56:00Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
O(k log L)$サンプルは振幅に基づく経験損失関数を最小化する任意のベクトルに信号が近いことを保証するのに十分であることを示す。
この結果はスパース位相検索に適応し、基底信号が$s$-sparseおよび$n$-dimensionalである場合、$O(s log n)$サンプルは同様の保証に十分であることを示す。
論文 参考訳(メタデータ) (2021-06-29T12:49:54Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
本稿では,ガウス過程に対して,パラメータ空間全体に対して同時に保持可能な保証付きスケーラブルな近似を導入する。
我々の近似は、スパーススペクトルガウス過程(SSGP)のための改良されたサンプル複雑性解析から得られる。
論文 参考訳(メタデータ) (2020-11-17T05:41:50Z) - Faster Wasserstein Distance Estimation with the Sinkhorn Divergence [0.0]
正方形ワッサーシュタイン距離(英: squared Wasserstein distance)は、非パラメトリックな設定における確率分布を比較する量である。
そこで本研究では,シンクホーンの発散量を用いて推定する手法を提案する。
滑らかな密度に対して、この推定器はサンプルの複雑さに匹敵するが、より高い正規化レベルが可能であることを示す。
論文 参考訳(メタデータ) (2020-06-15T06:58:16Z) - Riemannian Stochastic Proximal Gradient Methods for Nonsmooth
Optimization over the Stiefel Manifold [7.257751371276488]
R-ProxSGDとR-ProxSPBは、近位SGDと近位SpiderBoostの一般化である。
R-ProxSPBアルゴリズムは、オンラインの場合で$O(epsilon-3)$ IFOs、有限サムの場合は$O(n+sqrtnepsilon-3)$ IFOsである。
論文 参考訳(メタデータ) (2020-05-03T23:41:35Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。