論文の概要: Long-term simulation of physical and mechanical behaviors using curriculum-transfer-learning based physics-informed neural networks
- arxiv url: http://arxiv.org/abs/2502.07325v1
- Date: Tue, 11 Feb 2025 07:43:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:05:46.530545
- Title: Long-term simulation of physical and mechanical behaviors using curriculum-transfer-learning based physics-informed neural networks
- Title(参考訳): カリキュラム変換学習に基づく物理インフォームドニューラルネットワークを用いた物理・機械的挙動の長期シミュレーション
- Authors: Yuan Guo, Zhuojia Fu, Jian Min, Shiyu Lin, Xiaoting Liu, Youssef F. Rashed, Xiaoying Zhuang,
- Abstract要約: 本稿では,CTL-PINN(Curriculum-Transfer-Learning based Physics-informed Neural Network)を提案する。
CTL-PINNはカリキュラム学習とトランスファー学習の長所を組み合わせ、標準的なPINNの限界を克服する。
CTL-PINNの有効性とロバスト性は, 非線形波動伝搬, キルヒホフプレートの動的応答, および三峡貯留層の流体力学モデルに応用して実証された。
- 参考スコア(独自算出の注目度): 2.9006183445501996
- License:
- Abstract: This paper proposes a Curriculum-Transfer-Learning based physics-informed neural network (CTL-PINN) for long-term simulation of physical and mechanical behaviors. The main innovation of CTL-PINN lies in decomposing long-term problems into a sequence of short-term subproblems. Initially, the standard PINN is employed to solve the first sub-problem. As the simulation progresses, subsequent time-domain problems are addressed using a curriculum learning approach that integrates information from previous steps. Furthermore, transfer learning techniques are incorporated, allowing the model to effectively utilize prior training data and solve sequential time domain transfer problems. CTL-PINN combines the strengths of curriculum learning and transfer learning, overcoming the limitations of standard PINNs, such as local optimization issues, and addressing the inaccuracies over extended time domains encountered in CL-PINN and the low computational efficiency of TL-PINN. The efficacy and robustness of CTL-PINN are demonstrated through applications to nonlinear wave propagation, Kirchhoff plate dynamic response, and the hydrodynamic model of the Three Gorges Reservoir Area, showcasing its superior capability in addressing long-term computational challenges.
- Abstract(参考訳): 本稿では,CTL-PINN(Curriculum-Transfer-Learning based Physics-informed Neural Network)を提案する。
CTL-PINNの主な革新は、長期的な問題を短期的なサブプロブレムに分解することにある。
はじめは、最初のサブプロブレムを解決するために標準のPINNが使用される。
シミュレーションが進むにつれて、その後の時間領域問題は、以前のステップからの情報を統合するカリキュラム学習アプローチによって解決される。
さらに、転送学習技術が組み込まれており、モデルの事前トレーニングデータを効果的に活用し、逐次時間領域転送問題を解決することができる。
CTL-PINNはカリキュラム学習と伝達学習の長所を結合し、局所最適化問題などの標準PINNの限界を克服し、CL-PINNで遭遇する拡張時間領域とTL-PINNの計算効率の低下に対処する。
CTL-PINNの有効性とロバスト性は, 非線形波動伝搬, キルヒホフプレートの動的応答, および3峡谷貯水池地域の流体力学モデルに応用され, 長期の計算課題に対処する優れた能力を示す。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows [3.5707423185282656]
物理インフォームドニューラルネットワーク(PINN)は、科学計算とシミュレーションの分野で強力なツールとして注目されている。
本稿では、ニューラルネットワークのパワーと、離散化微分方程式によって課される力学を組み合わせることを提案する。
支配方程式を識別することにより、PINNは不連続性を考慮し、入力と出力の間の基礎となる関係を正確に捉えることを学ぶ。
論文 参考訳(メタデータ) (2024-04-04T06:56:32Z) - A Sequential Meta-Transfer (SMT) Learning to Combat Complexities of
Physics-Informed Neural Networks: Application to Composites Autoclave
Processing [1.6317061277457001]
PINNは非線形偏微分方程式の解法として人気がある。
PINNは、与えられたPDEシステムの特定の実現を近似するように設計されている。
新しいシステム構成に効率的に適応するために必要な一般化性は欠如している。
論文 参考訳(メタデータ) (2023-08-12T02:46:54Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Transfer Learning with Physics-Informed Neural Networks for Efficient
Simulation of Branched Flows [1.1470070927586016]
物理インフォームドニューラルネットワーク(PINN)は微分方程式を解くための有望なアプローチを提供する。
PINNに対して最近開発されたトランスファー学習アプローチを採用し,マルチヘッドモデルを提案する。
提案手法は,スクラッチからトレーニングした標準PINNと比較して,計算速度が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-11-01T01:50:00Z) - Multilayer Perceptron Based Stress Evolution Analysis under DC Current
Stressing for Multi-segment Wires [8.115870370527324]
エレクトロマイグレーション(EM)は、超大規模統合(VLSI)システムの信頼性解析における主要な関心事の一つである。
従来の手法はしばしば十分に正確ではないため、特に高度な技術ノードにおいて、望ましくない過設計につながる。
本稿では,多層パーセプトロン(MLP)を用いて,空核形成フェーズにおける相互接続木間の応力変化を計算する手法を提案する。
論文 参考訳(メタデータ) (2022-05-17T07:38:20Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
本研究では,高次元偏微分方程式を数値的に解くために,能動的学習を用いた学習データを生成するディープラーニングに基づくニューラル・ガレルキンスキームを提案する。
ニューラル・ガレルキンスキームはディラック・フランケル変分法に基づいて、残余を時間とともに最小化することで、ネットワークを訓練する。
提案したニューラル・ガレルキン・スキームの学習データ収集は,高次元におけるネットワークの表現力を数値的に実現するための鍵となる。
論文 参考訳(メタデータ) (2022-03-02T19:09:52Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。