論文の概要: Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows
- arxiv url: http://arxiv.org/abs/2404.03240v1
- Date: Thu, 4 Apr 2024 06:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 15:33:48.697242
- Title: Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows
- Title(参考訳): 2相ダーシー流れのシミュレーションと予測のための知識に基づく畳み込みニューラルネットワーク
- Authors: Zakaria Elabid, Daniel Busby, Abdenour Hadid,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、科学計算とシミュレーションの分野で強力なツールとして注目されている。
本稿では、ニューラルネットワークのパワーと、離散化微分方程式によって課される力学を組み合わせることを提案する。
支配方程式を識別することにより、PINNは不連続性を考慮し、入力と出力の間の基礎となる関係を正確に捉えることを学ぶ。
- 参考スコア(独自算出の注目度): 3.5707423185282656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks (PINNs) have gained significant prominence as a powerful tool in the field of scientific computing and simulations. Their ability to seamlessly integrate physical principles into deep learning architectures has revolutionized the approaches to solving complex problems in physics and engineering. However, a persistent challenge faced by mainstream PINNs lies in their handling of discontinuous input data, leading to inaccuracies in predictions. This study addresses these challenges by incorporating the discretized forms of the governing equations into the PINN framework. We propose to combine the power of neural networks with the dynamics imposed by the discretized differential equations. By discretizing the governing equations, the PINN learns to account for the discontinuities and accurately capture the underlying relationships between inputs and outputs, improving the accuracy compared to traditional interpolation techniques. Moreover, by leveraging the power of neural networks, the computational cost associated with numerical simulations is substantially reduced. We evaluate our model on a large-scale dataset for the prediction of pressure and saturation fields demonstrating high accuracies compared to non-physically aware models.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、科学計算とシミュレーションの分野で強力なツールとして注目されている。
物理原理を深層学習アーキテクチャにシームレスに統合する能力は、物理学と工学の複雑な問題を解決するアプローチに革命をもたらした。
しかし、主流のPINNが直面する永続的な課題は、不連続な入力データを扱うことにある。
本研究では,これらの課題に対して,統制方程式の離散形式をPINNフレームワークに組み込むことで対処する。
本稿では、ニューラルネットワークのパワーと、離散化微分方程式によって課される力学を組み合わせることを提案する。
支配方程式を識別することにより、PINNは不連続性を考慮し、入力と出力の間の基礎となる関係を正確に把握し、従来の補間技術と比較して精度を向上させる。
さらに、ニューラルネットワークのパワーを活用することにより、数値シミュレーションに関連する計算コストを大幅に削減する。
本研究では,圧力場と飽和場の予測のための大規模データセットを用いて,非物理的に認識されたモデルと比較して高い精度を示す。
関連論文リスト
- Physics-Informed Neural Networks for Electrical Circuit Analysis: Applications in Dielectric Material Modeling [0.0]
物理情報ニューラルネットワーク(PINN)は、物理法則を直接学習プロセスに組み込むことによって、有望なアプローチを提供する。
本稿では、PINNの実装に特化して設計されたDeepXDEフレームワークの機能と制限について説明する。
電流(ln(I))に対数変換を適用することにより,PINN予測の安定性と精度が著しく向上することを示す。
論文 参考訳(メタデータ) (2024-11-13T19:08:36Z) - Physics Informed Kolmogorov-Arnold Neural Networks for Dynamical Analysis via Efficent-KAN and WAV-KAN [0.12045539806824918]
物理インフォームド・コルモゴロフ・アルノルドニューラルネットワーク(PIKAN)を効率的なKANとWAV-KANにより実装する。
PIKANは従来のディープニューラルネットワークよりも優れた性能を示し、少ないレイヤで同じレベルの精度を実現し、計算オーバーヘッドを低減している。
論文 参考訳(メタデータ) (2024-07-25T20:14:58Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Transfer Learning with Physics-Informed Neural Networks for Efficient
Simulation of Branched Flows [1.1470070927586016]
物理インフォームドニューラルネットワーク(PINN)は微分方程式を解くための有望なアプローチを提供する。
PINNに対して最近開発されたトランスファー学習アプローチを採用し,マルチヘッドモデルを提案する。
提案手法は,スクラッチからトレーニングした標準PINNと比較して,計算速度が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-11-01T01:50:00Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Thermodynamics-based Artificial Neural Networks for constitutive
modeling [0.0]
本稿では,物質点レベルでのひずみ速度独立過程のモデリングのための,データ駆動型物理ベースニューラルネットワークの新たなクラスを提案する。
熱力学の2つの基本原理は、自動微分を利用してネットワークのアーキテクチャに符号化される。
本研究では, 伸縮硬化および軟化ひずみを有するエラスト塑性材料をモデル化するためのTANNの広範囲な適用性を示す。
論文 参考訳(メタデータ) (2020-05-25T15:56:34Z) - Physics-informed deep learning for incompressible laminar flows [13.084113582897965]
流体力学のための物理インフォームドニューラルネットワーク(PINN)の混合可変方式を提案する。
パラメトリック研究では、混合変数スキームがPINNのトレーニング容易性と解の精度を向上させることが示されている。
論文 参考訳(メタデータ) (2020-02-24T21:51:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。