論文の概要: Foundation Neural-Network Quantum States
- arxiv url: http://arxiv.org/abs/2502.09488v1
- Date: Thu, 13 Feb 2025 16:52:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:18.458237
- Title: Foundation Neural-Network Quantum States
- Title(参考訳): ニューラルネットワーク量子状態の基礎
- Authors: Riccardo Rende, Luciano Loris Viteritti, Federico Becca, Antonello Scardicchio, Alessandro Laio, Giuseppe Carleo,
- Abstract要約: Foundation Neural-Network Quantum States (FNQS)は、量子多体システムを研究するための統合パラダイムである。
FNQSは基礎モデルの鍵となる原理を活用し、単一の汎用アーキテクチャに基づいて変動波動関数を定義する。
FNQSは、訓練中に遭遇した以上の物理ハミルトニアンに一般化することができる。
- 参考スコア(独自算出の注目度): 39.47297975798672
- License:
- Abstract: Foundation models are highly versatile neural-network architectures capable of processing different data types, such as text and images, and generalizing across various tasks like classification and generation. Inspired by this success, we propose Foundation Neural-Network Quantum States (FNQS) as an integrated paradigm for studying quantum many-body systems. FNQS leverage key principles of foundation models to define variational wave functions based on a single, versatile architecture that processes multimodal inputs, including spin configurations and Hamiltonian physical couplings. Unlike specialized architectures tailored for individual Hamiltonians, FNQS can generalize to physical Hamiltonians beyond those encountered during training, offering a unified framework adaptable to various quantum systems and tasks. FNQS enable the efficient estimation of quantities that are traditionally challenging or computationally intensive to calculate using conventional methods, particularly disorder-averaged observables. Furthermore, the fidelity susceptibility can be easily obtained to uncover quantum phase transitions without prior knowledge of order parameters. These pretrained models can be efficiently fine-tuned for specific quantum systems. The architectures trained in this paper are publicly available at https://huggingface.co/nqs-models, along with examples for implementing these neural networks in NetKet.
- Abstract(参考訳): 基礎モデルは、テキストや画像などのさまざまなデータタイプを処理でき、分類や生成といったさまざまなタスクを一般化できる、非常に汎用的なニューラルネットワークアーキテクチャである。
この成功にインスパイアされた我々は、量子多体システムを研究するための統合パラダイムとして、FNQS(Foundation Neural-Network Quantum States)を提案する。
FNQSは基礎モデルの鍵となる原理を利用して、スピン構成やハミルトンの物理的カップリングを含むマルチモーダル入力を処理する単一の汎用アーキテクチャに基づいて変動波動関数を定義する。
個々のハミルトニアン向けに調整された特殊なアーキテクチャとは異なり、FNQSは訓練中に遭遇した以上の物理ハミルトニアンに一般化することができ、様々な量子システムやタスクに適応可能な統一されたフレームワークを提供する。
FNQSは、伝統的に困難あるいは計算集約的な量の効率的な推定を可能にし、従来の手法、特に乱れた平均観測値を用いて計算する。
さらに、秩序パラメータの事前の知識を必要とせず、量子相転移を解明するために、忠実さの感受性を容易に得ることができる。
これらの事前訓練されたモデルは、特定の量子系に対して効率的に微調整することができる。
この論文でトレーニングされたアーキテクチャは、NetKetでこれらのニューラルネットワークを実装する例とともに、https://huggingface.co/nqs-modelsで公開されている。
関連論文リスト
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
現代のAIシステムはニューラルネットワーク上に構築されることが多い。
古典的ニューラルネットワーク層を量子層に置き換える枠組みを提案する。
画像分類データセットの数値実験を行い、量子部品の体系的導入による性能変化を実証する。
論文 参考訳(メタデータ) (2024-09-26T07:01:29Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Studying the Impact of Quantum-Specific Hyperparameters on Hybrid Quantum-Classical Neural Networks [4.951980887762045]
ハイブリッド量子古典ニューラルネットワーク(HQNN)は、古典的な機械学習の強みと量子コンピューティング能力を組み合わせた、有望なソリューションである。
本稿では,PennyLaneフレームワーク上に実装された画像分類タスクのHQNNモデルに対して,これらのバリエーションが与える影響について検討する。
我々は,HQNNモデルの直感的および直感的学習パターンを制御された量子摂動の粒度レベル内で明らかにし,精度とトレーニング時間との相関関係の健全な基盤を構築することを目的としている。
論文 参考訳(メタデータ) (2024-02-16T11:44:25Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
量子ニューラルネットワーク(QNN)は、機械学習、化学、最適化の応用を確立するための主要な戦略として登場した。
量子ニューラルネットワークのデータ再アップロードの表現能力に関する理論的枠組みを定式化する。
論文 参考訳(メタデータ) (2022-05-16T17:58:27Z) - Quantum Self-Attention Neural Networks for Text Classification [8.975913540662441]
量子自己アテンションニューラルネットワーク(QSANN)と呼ばれる,新しいシンプルなネットワークアーキテクチャを提案する。
本稿では,量子ニューラルネットワークに自己アテンション機構を導入し,ガウス射影量子自己アテンションを自己アテンションの有感な量子バージョンとして活用する。
提案手法は低レベル量子雑音に対するロバスト性を示し,量子ニューラルネットワークアーキテクチャに対するレジリエンスを示す。
論文 参考訳(メタデータ) (2022-05-11T16:50:46Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
本稿では,ノイズの多い中間規模量子デバイス上で動作可能な,実現可能な純粋量子アーキテクチャを提案する。
本研究は、純粋量子完全畳み込みネットワークのトレーニングを成功させ、それをハイブリッドソリューションと比較することで利点を論じるものである。
論文 参考訳(メタデータ) (2021-10-05T01:06:54Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。