論文の概要: MIR-Bench: Benchmarking LLM's Long-Context Intelligence via Many-Shot In-Context Inductive Reasoning
- arxiv url: http://arxiv.org/abs/2502.09933v2
- Date: Thu, 20 Feb 2025 20:44:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 17:08:22.917724
- Title: MIR-Bench: Benchmarking LLM's Long-Context Intelligence via Many-Shot In-Context Inductive Reasoning
- Title(参考訳): MIR-Bench: マルチショットインコンテキスト推論によるLLMのロングコンテキストインテリジェンスベンチマーク
- Authors: Kai Yan, Zhan Ling, Kang Liu, Yifan Yang, Ting-Han Fan, Lingfeng Shen, Zhengyin Du, Jiecao Chen,
- Abstract要約: 我々は,最初のマルチショットインコンテキスト帰納的推論ベンチマークであるMIR-Benchを提案する。
帰納的推論と多発性ICLに関する多くの新しい問題について検討し, 誤写に対する頑健さについて検討した。
- 参考スコア(独自算出の注目度): 21.056519816264505
- License:
- Abstract: Inductive Reasoning (IR), the ability to summarize rules from examples and apply on new ones, has long been viewed as a primal ability for general intelligence and widely studied by cognitive science and AI researchers. Many benchmarks have been proposed to measure such ability for Large Language Models (LLMs); however, they focus on few-shot (usually $<$10) setting and lack evaluation for aggregating many pieces of information from long contexts. On the other hand, the ever-growing context length of LLMs have brought forth the novel paradigm of many-shot In-Context Learning (ICL), which addresses new tasks with hundreds to thousands of examples without expensive and inefficient fine-tuning. However, many-shot evaluations are mostly focused on classification (a very limited aspect of IR), and popular long-context LLM tasks such as Needle-In-A-Haystack (NIAH) seldom require complicated intelligence for integrating many pieces of information. To fix the issues from both worlds, we propose MIR-Bench, the first many-shot in-context inductive reasoning benchmark that asks LLM to induce output via input-output examples from underlying functions with diverse data format. Based on MIR-Bench, we study many novel problems for inductive reasoning and many-shot ICL, including robustness against erroneous shots and the effect of Chain-of-Thought (CoT), and acquired insightful findings.
- Abstract(参考訳): 帰納的推論(Inductive Reasoning、IR)は、例からルールを要約し、新しいルールに適用する能力であり、認知科学やAI研究者によって広く研究されている一般知能の予備的能力とみなされてきた。
多くのベンチマークは、LLM(Large Language Models)のそのような能力を測定するために提案されているが、それらは、少数の(通常$<10)設定に焦点を当てており、長いコンテキストから多くの情報を集約するための評価が欠如している。
一方,LLMの文脈長の増大は,高コストかつ非効率な微調整を伴わずに,数百から数千のサンプルで新たなタスクを処理できる多ショットインコンテキスト学習(ICL)という新たなパラダイムを生み出している。
しかし、多くのショット評価は主に分類(IRの非常に限定的な側面)に焦点を当てており、ニードル・イン・A・ヘイスタック(NIAH)のような一般的なLLMタスクは、多くの情報を統合するために複雑な知性を必要とすることは滅多にない。
MIR-Bench は LLM に様々なデータ形式を持つ基礎関数から入力出力の例を通して出力を誘導するよう求める,最初のマルチショットインコンテキストインダクティブ推論ベンチマークである。
MIR-Benchをベースとして,誤撮影に対する堅牢性やCoT(Chain-of-Thought)の効果など,帰納的推論や多発性ICLの新たな問題について検討し,洞察力のある知見を得た。
関連論文リスト
- Argumentation Computation with Large Language Models : A Benchmark Study [6.0682923348298194]
大規模言語モデル(LLM)は、ニューロシンボリックコンピューティングにおいて大きな進歩を遂げた。
我々は,様々な抽象的論証セマンティクスの拡張を決定する上でのLLMの能力を検討することを目的とする。
論文 参考訳(メタデータ) (2024-12-21T18:23:06Z) - DetectiveQA: Evaluating Long-Context Reasoning on Detective Novels [89.51834016940153]
本稿では,100K以上の平均コンテキスト長を持つナラティブ推論ベンチマークであるTectiveQAを紹介する。
探偵小説をデータソースとして使用し、様々な理由付け要素を自然に持っている。
私たちは中国語で600の質問を手動で注釈付けし、文脈情報と質問の英語版も提供しました。
論文 参考訳(メタデータ) (2024-09-04T06:28:22Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
大規模言語モデル(LLM)は、下流タスクで最先端のパフォーマンスを達成することで、多くの領域に革命をもたらした。
近年の取り組みにより,LSMは逐次決定問題の解決に乏しいことが示されている。
論文 参考訳(メタデータ) (2024-01-17T08:22:52Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-Thoughting(CoT)プロンプトは、大規模言語モデル(LLM)のための一般的なコンテキスト内学習手法である。
本稿では、教師なし学習を用いて有理数の潜在空間表現を生成するLaRS(Lalatnt Reasoning Skills)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-07T20:36:10Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
大規模言語モデル (LLM) は, 推論作業における乱雑な内容や無関係な内容を扱う際に, 人間の認知バイアスに類似した障害パターンを示す。
コンシス・アンド・オーガナイズド・パーセプション(COP)という新しい推論手法を提案する。
COPは与えられたステートメントを慎重に分析し、冗長性を効率的に排除しながら、最も関連する情報を識別する。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z) - Large Language Models are Zero-Shot Reasoners [28.6899375595088]
思考の連鎖(CoT)プロンプトは、ステップバイステップの回答例を通して複雑な多段階推論を引き出す手法である。
LLMは、各回答の前に単に「ステップバイステップ」を追加して、まともなゼロショット推論子であることを示す。
実験結果から,同一のプロンプトテンプレートを用いたZero-shot-CoTはゼロショットLLM性能を著しく上回ることがわかった。
論文 参考訳(メタデータ) (2022-05-24T09:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。