論文の概要: Towards Reasoning Ability of Small Language Models
- arxiv url: http://arxiv.org/abs/2502.11569v1
- Date: Mon, 17 Feb 2025 08:59:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:16:56.924781
- Title: Towards Reasoning Ability of Small Language Models
- Title(参考訳): 小言語モデルの推論能力に向けて
- Authors: Gaurav Srivastava, Shuxiang Cao, Xuan Wang,
- Abstract要約: 我々は,小言語モデル (SLM) が競争力のある推論性能を実現できることを示す。
14の推論ベンチマークで6つのモデルファミリーから72のSLMを体系的に調査し、ベンチマークし、分析した。
我々の発見は、スケーリングが強力な推論を達成する唯一の方法である、という仮定に挑戦する。
- 参考スコア(独自算出の注目度): 3.732224317444325
- License:
- Abstract: Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale ($\sim$100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.
- Abstract(参考訳): 推論は、長いこと、大きな言語モデル(LLM)の創発的特性と見なされ、あるスケール($100B)以上で現れる($100B)。
しかし、近年の研究では、小言語モデル(SLM)が競争力のある推論性能も達成できることが示され、この仮定に異議を唱えている。
SLMは、その効率性とデプロイ性に対して、ますます好まれている。
しかしながら、スクラッチから訓練されたり、量子化、刈り取り、蒸留を通じてLLMから派生したものを含む、多様なSLMの推論能力に関する体系的な研究が欠如している。
SLMはLLMに匹敵する推論能力を達成できますか?
本研究は,14の推論ベンチマークにおいて,6つのモデルファミリーから72のSLMを系統的に調査し,ベンチマークし,分析する。
信頼性評価のために,4つの評価手法を検証し,800個のデータポイント上での人的評価と比較した。
堅牢なパフォーマンスアセスメントを保証するために、すべての実験を3回繰り返します。
さらに、小型モデルにおける異なるプロンプト戦略の影響を分析する。
また, 逆条件下でのモデルロバスト性および中間的推論ステップの評価も行った。
我々の発見は、スケーリングが強力な推論を達成する唯一の方法である、という仮定に挑戦する。
代わりに、構造化トレーニングやポストトレーニング圧縮によって、強力な推論能力を持つSLMを開発できる未来を予見する。
推論集約的なタスクに対して、LLMの効率的な代替手段として機能することができる。
関連論文リスト
- Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - CARL-GT: Evaluating Causal Reasoning Capabilities of Large Language Models [18.975064947089805]
因果推論能力は、教育や医療といった幅広い応用において、大きな言語モデル(LLM)にとって不可欠である。
グラフとタブラリデータを用いた大規模言語モデルのCAusal Reasoning機能を評価するCARL-GTというベンチマークを提供する。
論文 参考訳(メタデータ) (2024-12-23T20:34:32Z) - What Makes In-context Learning Effective for Mathematical Reasoning: A Theoretical Analysis [81.15503859645149]
本稿では,大規模言語モデルの推論性能に及ぼす文脈内実演の影響を理論的に解析することを目的とする。
本稿では, LMS3 という, 単純で一般化可能な, 低複雑さな実演選択法を提案する。
論文 参考訳(メタデータ) (2024-12-11T11:38:11Z) - Are Large Language Models Good Statisticians? [10.42853117200315]
StatQAは統計解析タスク用に設計された新しいベンチマークである。
GPT-4oのような最先端モデルでさえ、64.83%の最高の性能を実現していることを示す。
オープンソースのLLMは限られた能力を示すが、細調整されたものは顕著に改善されている。
論文 参考訳(メタデータ) (2024-06-12T02:23:51Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Can formal argumentative reasoning enhance LLMs performances? [0.3659498819753633]
本稿では,Large Language Models (LLM) の性能に及ぼす計算論証セマンティクスの導入効果を評価するパイプライン (MQArgEng) を提案する。
調査の結果、MQArgEngは、調査対象のトピックのカテゴリの大部分で適度なパフォーマンス向上をもたらし、将来性を示し、さらなる研究を保証していることが示された。
論文 参考訳(メタデータ) (2024-05-16T22:09:31Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は意思決定タスクを自動化するために使用される。
本稿では,LPMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを評価する。
さまざまな因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成します。
これらのベンチマークにより、LLMが事実を記憶したり、他のショートカットを見つけたりすることで、変化を正確に予測する能力を切り離すことができます。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
既存のパラダイムは、LLMの性能を評価するために、人間アノテーションまたはモデルベースの評価器のいずれかに依存している。
ピアレビュープロセスを通じてLLMを自動的に評価できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-28T12:33:14Z) - Clever Hans or Neural Theory of Mind? Stress Testing Social Reasoning in
Large Language Models [82.50173296858377]
多くの逸話例は、ChatGPTやGPT-4のような新しい大規模言語モデル(LLM)が、N-ToM(Neural Theory-of-Mind)を示すことを示唆するために使用された。
我々は,LLMsのN-ToMの範囲を6つのタスクに対して広範囲に評価することにより検討し,LLMsが特定のN-ToM能力を示す一方で,この挙動は堅牢性には程遠いことを見出した。
論文 参考訳(メタデータ) (2023-05-24T06:14:31Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
大規模言語モデル(LLM)は自動要約を約束しているが、その成功の背景にある理由はよく分かっていない。
LLMのゼロショット要約能力の鍵は、モデルサイズではなく、命令チューニングにある。
論文 参考訳(メタデータ) (2023-01-31T18:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。