論文の概要: Collaboration Between the City and Machine Learning Community is Crucial to Efficient Autonomous Vehicles Routing
- arxiv url: http://arxiv.org/abs/2502.13188v2
- Date: Sat, 14 Jun 2025 10:24:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 19:42:49.113478
- Title: Collaboration Between the City and Machine Learning Community is Crucial to Efficient Autonomous Vehicles Routing
- Title(参考訳): 都市と機械学習コミュニティの連携は、効率的な自動運転車のルーティングにとって不可欠である
- Authors: Anastasia Psarou, Ahmet Onur Akman, Łukasz Gorczyca, Michał Hoffmann, Grzegorz Jamróz, Rafał Kucharski,
- Abstract要約: 自動運転車(AV)は、交通ネットワークを不安定にすることができる。
人間のドライバーとAVをシミュレートすることで、この相互作用を研究する。
我々は、市当局がMLコミュニティと協力して、自動車メーカーが提案するルーティングアルゴリズムを監視し、批判的に評価する必要があると主張している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous vehicles (AVs), possibly using Multi-Agent Reinforcement Learning (MARL) for simultaneous route optimization, may destabilize traffic networks, with human drivers potentially experiencing longer travel times. We study this interaction by simulating human drivers and AVs. Our experiments with standard MARL algorithms reveal that, both in simplified and complex networks, policies often fail to converge to an optimal solution or require long training periods. This problem is amplified by the fact that we cannot rely entirely on simulated training, as there are no accurate models of human routing behavior. At the same time, real-world training in cities risks destabilizing urban traffic systems, increasing externalities, such as $CO_2$ emissions, and introducing non-stationarity as human drivers will adapt unpredictably to AV behaviors. In this position paper, we argue that city authorities must collaborate with the ML community to monitor and critically evaluate the routing algorithms proposed by car companies toward fair and system-efficient routing algorithms and regulatory standards.
- Abstract(参考訳): MARL(Multi-Agent Reinforcement Learning)を同時経路最適化に使用する自律走行車(AV)は、交通ネットワークを不安定にし、人間の運転者が長い走行時間を経験する可能性がある。
人間のドライバーとAVをシミュレートすることで、この相互作用を研究する。
標準的なMARLアルゴリズムによる実験では、単純化されたネットワークと複雑なネットワークの両方において、ポリシーが最適解に収束しなかったり、長いトレーニング期間を必要としていたりすることが判明した。
この問題は、人間のルーティング行動の正確なモデルがないため、シミュレーショントレーニングに完全に依存できないという事実によって増幅される。
同時に、都市における現実世界の訓練は、都市交通システムの不安定化、CO_2$排出のような外部性の増加、そして人間のドライバーがAVの行動に予測不可能に適応する非定常性の導入を危険にさらしている。
本稿では、市当局がMLコミュニティと協力して、自動車メーカーが公正かつシステム効率の高いルーティングアルゴリズムや規制基準に対して提案するルーティングアルゴリズムを監視し、批判的に評価する必要があることを論じる。
関連論文リスト
- Enhancing Safety for Autonomous Agents in Partly Concealed Urban Traffic Environments Through Representation-Based Shielding [2.9685635948300004]
本稿では,自律型エージェントが知覚できる情報を中心に,強化学習エージェント(RL)のための新しい状態表現を提案する。
我々の発見は、より堅牢で信頼性の高い自律ナビゲーション戦略の道を開いた。
論文 参考訳(メタデータ) (2024-07-05T08:34:49Z) - Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving [17.659812774579756]
本研究では,自律走行車における分散型協調運転ポリシーを学習する非対称アクター・批判モデルを提案する。
マスキングを用いたアテンションニューラルネットワークを用いることで,実世界の交通動態と部分観測可能性の効率よく管理できる。
論文 参考訳(メタデータ) (2024-03-18T16:13:02Z) - Learning Realistic Traffic Agents in Closed-loop [36.38063449192355]
強化学習(RL)は、違反を避けるために交通エージェントを訓練することができるが、RLのみを使用することで非人間的な運転行動をもたらす。
本稿では,交通規制制約の下で,専門家による実演と一致させるためにRTR(Reinforce Traffic Rules)を提案する。
実験の結果,RTRはより現実的で一般化可能な交通シミュレーションポリシーを学習することがわかった。
論文 参考訳(メタデータ) (2023-11-02T16:55:23Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
本研究は,学習エージェントの成功に対する異なるトレーニングベンチマーク設計の影響を分析した最初の実証的研究である。
複数ステップのルックアヘッドで計画を行うRLベースの駆動エージェントであるtrajectory value learning (TRAVL)を提案する。
実験の結果,TRAVLはすべてのベースラインと比較してより速く学習でき,安全な操作が可能であることがわかった。
論文 参考訳(メタデータ) (2023-06-27T17:58:39Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Calibration of Human Driving Behavior and Preference Using Naturalistic
Traffic Data [5.926030548326619]
自然トラフィックデータからドライバの好みを推定するためにモデルをどのように反転させることができるかを示す。
我々のアプローチの際立った利点は、計算負担を大幅に削減することである。
論文 参考訳(メタデータ) (2021-05-05T01:20:03Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z) - Deep Reinforcement Learning for Human-Like Driving Policies in Collision
Avoidance Tasks of Self-Driving Cars [1.160208922584163]
自動運転ポリシーを生成するために,モデルフリーで深層強化学習手法を導入する。
本研究では,2車線道路における静的障害物回避タスクをシミュレーションで検討する。
このアプローチが人間ライクな運転ポリシーにつながることを実証します。
論文 参考訳(メタデータ) (2020-06-07T18:20:33Z) - Decoding pedestrian and automated vehicle interactions using immersive
virtual reality and interpretable deep learning [6.982614422666432]
本研究では,自動走行車の存在による影響が期待される都市動態の重要な要素として,歩行者の横断行動について検討する。
歩行者の待ち時間はデータ駆動のCox Proportional Hazards(CPH)モデルを用いて分析される。
その結果,道路上の自動走行車の存在,広い車線幅,道路上の高密度化,観光距離の制限,歩行習慣の欠如が待ち時間の主な要因であることが示唆された。
論文 参考訳(メタデータ) (2020-02-18T01:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。